Consecutive patterns and statistics on restricted permutations

El tema d'aquesta tesi es l'enumeracio de permutacions amb subsequencies prohibides respecte a certs estadistics, i l'enumeracio de permutacions que eviten subsequencies generalitzades. Despres d'introduir algunes definicions sobre subsequencies i estadistics en permutacions i camins de Dyck, comencem estudiant la distribucio dels estadistics -nombre de punts fixos' i -nombre d'excedencies' en permutacions que eviten una subsequencia de longitud 3. Un dels resultats principals es que la distribucio conjunta d'aquest parell de parametres es la mateixa en permutacions que eviten 321 que en permutacions que eviten 132. Aixo generalitza un teorema recent de Robertson, Saracino i Zeilberger. Demostrem aquest resultat donant una bijeccio que preserva els dos estadistics en questio i un altre parametre. La idea clau consisteix en introduir una nova classe d'estadistics en camins de Dyck, basada en el que anomenem tunel. A continuacio considerem el mateix parell d'estadistics en permutacions que eviten simultaniament dues o mes subsequencies de longitud 3. Resolem tots els casos donant les funcions generadores corresponents. Alguns casos son generalitzats a subsequencies de longitud arbitraria. Tambe descrivim la distribucio d'aquests parametres en involucions que eviten qualsevol subconjunt de subsequencies de longitud 3. La tecnica principal consisteix en fer servir bijeccions entre permutacions amb subsequencies prohibides i certs tipus de camins de Dyck, de manera que els estadistics en permutacions que considerem corresponen a estadistics en camins de Dyck que son mes facils d'enumerar. Tot seguit presentem una nova familia de bijeccions del conjunt de camins de Dyck a si mateix, que envien estadistics que apareixen en l'estudi de permutacions amb subsequencies prohibides a estadistics classics en camins de Dyck, la distribucio dels quals s'obte facilment. En particular, aixo ens dona una prova bijectiva senzilla de l'equidistribucio de punts fixos en les permutacions que eviten 321 i en les que eviten 132. A continuacio donem noves interpretacions dels nombres de Catalan i dels nombres de Fine. Considerem una classe de permutacions definida en termes d'aparellaments de 2n punts en una circumferencia sense creuaments. N'estudiem l'estructura i algunes propietats, i donem la distribucio de diversos estadistics en aquests permutacions. En la seguent part de la tesi introduim una nocio diferent de subsequencies prohibides, amb el requeriment que els elements que formen la subsequencia han d'apareixer en posicions consecutives a la permutacio. Mes en general, estudiem la distribucio del nombre d'ocurrencies de subparaules (subsequencies consecutives) en permutacions. Resolem el problema en diversos casos segons la forma de la subparaula, obtenint-ne les funcions generadores exponencials bivariades corresponents com a solucions de certes equacions diferencials lineals. El metode esta basat en la representacio de permutacions com a arbres binaris creixents i en metodes simbolics. La part final tracta de subsequencies generalitzades, que extenen tant la nocio de subsequencies classiques com la de subparaules. Per algunes subsequencies obtenim nous resultats enumeratius. Finalment estudiem el comportament assimptotic del nombre de permutacions de mida n que eviten una subsequencia generalitzada fixa quan n tendeix a infinit. Tambe donem fites inferiors i superiors en el nombre de permutacions que eviten certes subsequencies.

[1]  H. Wilf generatingfunctionology: Third Edition , 1990 .

[2]  Zvezdelina Stankova,et al.  Forbidden subsequences , 1994, Discret. Math..

[3]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[4]  Julian West,et al.  Generating trees and forbidden subsequences , 1996, Discret. Math..

[5]  Antoine Vella,et al.  Pattern avoidance in cyclically ordered structures , 2003 .

[6]  Richard P. Stanley,et al.  Some Combinatorial Properties of Schubert Polynomials , 1993 .

[7]  Toufik Mansour,et al.  Restricted Permutations, Continued Fractions, and Chebyshev Polynomials , 2000, Electron. J. Comb..

[8]  Marc Noy,et al.  Graphs of Non-Crossing Perfect Matchings , 2002, Graphs Comb..

[9]  B. Sagan The Symmetric Group , 2001 .

[10]  Marcel P. Schützenberger Quelques remarques sur une Construction de Schensted. , 1963 .

[11]  Aaron Robertson Permutations Containing and Avoiding 123 and 132 Patterns , 1999, Discret. Math. Theor. Comput. Sci..

[12]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[13]  Igor Pak,et al.  Trees Associated with the Motzkin Numbers , 1996, J. Comb. Theory, Ser. A.

[14]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[15]  Christian Krattenthaler,et al.  Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..

[16]  T. Mansour,et al.  Restricted permutations and Chebyshev polynomials. , 2002 .

[17]  Sergey Kitaev Multi-avoidance of generalised patterns , 2003, Discret. Math..

[18]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[19]  Darla Kremer Permutations with forbidden subsequences and a generalized Schro"der number , 2000, Discret. Math..

[20]  Eric Babson,et al.  Generalized permutation patterns and a classification of the Mahonian statistics , 2000 .

[21]  Zvezdelina Stankova Classification of Forbidden Subsequences of Length 4 , 1996, Eur. J. Comb..

[22]  Ira M. Gessel,et al.  Lattice Walks in Zd and Permutations with No Long Ascending Subsequences , 1997, Electron. J. Comb..

[23]  Toufik Mansour,et al.  Counting Occurrences of 132 in a Permutation , 2002, Adv. Appl. Math..

[24]  T. Mansour,et al.  Restricted 132-Avoiding Permutations , 2000, Adv. Appl. Math..

[25]  P. Flajolet,et al.  Patterns in random binary search trees , 1997 .

[26]  Emeric Deutsch,et al.  An involution on Dyck paths and its consequences , 1999, Discret. Math..

[27]  T. Mansour,et al.  Refined Restricted Permutations Avoiding Subsets of Patterns of Length Three , 2002, math/0204005.

[28]  Daniel A. Spielman,et al.  An Infinite Antichain of Permutations , 2000, Electron. J. Comb..

[29]  Sergi Elizalde,et al.  A Simple and Unusual Bijection for Dyck Paths and its Consequences , 2003 .

[30]  Julian West,et al.  A New Class of Wilf-Equivalent Permutations , 2001 .

[31]  Julian West,et al.  Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .

[32]  Toufik Mansour Continued Fractions and Generalized Patterns , 2002, Eur. J. Comb..

[33]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[34]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[35]  Yuval Roichman,et al.  Equidistribution and sign-balance on 321-avoiding permutations. , 2003 .

[36]  Doron Zeilberger,et al.  Permutation Patterns and Continued Fractions , 1999, Electron. J. Comb..

[37]  Dominique Foata,et al.  Major Index and Inversion Number of Permutations , 1978 .

[38]  Markus Fulmek Enumeration of permutations containing a prescribed number of occurrences of a pattern of length three , 2003, Adv. Appl. Math..

[39]  Miklós Bóna The Solution of a Conjecture of Stanley and Wilf for All Layered Patterns , 1999, J. Comb. Theory, Ser. A.

[40]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[41]  Igor Pak,et al.  Bijections for refined restricted permutations , 2004, J. Comb. Theory, Ser. A.

[42]  Olivier Guibert,et al.  Vexillary Involutions are Enumerated by Motzkin Numbers , 2001 .

[43]  Julian West,et al.  The Permutations 123p4…pm and 321p4…pm are Wilf-Equivalent , 2000, Graphs Comb..

[44]  Emeric Deutsch Dyck path enumeration , 1999, Discret. Math..

[45]  Svante Linusson Extended pattern avoidance , 2002, Discret. Math..

[46]  Mireille Bousquet-Mélou,et al.  Four Classes of Pattern-Avoiding Permutations Under One Roof: Generating Trees with Two Labels , 2003, Electron. J. Comb..

[47]  Toufik Mansour,et al.  RESTRICTED 132-INVOLUTIONS , 2002 .

[48]  S. Kitaev Generalized pattern avoidance with additional restrictions , 2002, math/0205215.

[49]  Anders Claesson,et al.  Catalan continued fractions and increasing subsequences in permutations , 2002, Discret. Math..

[50]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[51]  Frederick M. Goodman,et al.  Coxeter graphs and towers of algebras , 1989 .

[52]  L. CARLITZ Enumeration of permutations by rises and cycle structure. , 1973 .

[53]  Luc Devroye,et al.  Limit Laws for Local Counters in Random Binary Search Tree , 1991, Random Struct. Algorithms.

[54]  T. Mansour,et al.  C O ] 1 7 N ov 2 00 0 RESTRICTED PERMUTATIONS AND CHEBYSHEV POLYNOMIALS , 2000 .

[55]  Miklós Bóna,et al.  Permutations avoiding certain patterns: The case of length 4 and some generalizations , 1997, Discret. Math..

[56]  Aaron Robertson Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns , 1999 .

[57]  D. Zeilberger,et al.  The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.

[58]  Miklós Bóna Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.

[59]  Universit Lacim,et al.  The permutation classes equinumerous to the Smooth class , 1998 .

[60]  Emeric Deutsch,et al.  Longest Increasing Subsequences in Pattern-Restricted Permutations , 2002, Electron. J. Comb..

[61]  Astrid Reifegerste A Generalization of Simion-Schmidt's Bijection for Restricted Permutations , 2002, Electron. J. Comb..

[62]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[63]  Amitai Regev,et al.  Asymptotic values for degrees associated with strips of young diagrams , 1981 .

[64]  Doron Zeilberger,et al.  Refined Restricted Permutations , 2002, math/0203033.

[65]  Philippe Flajolet,et al.  Analytic combinatorics of non-crossing configurations , 1999, Discret. Math..

[66]  Martin Klazar,et al.  The Füredi-Hajnal Conjecture Implies the Stanley-Wilf Conjecture , 2000 .

[67]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[68]  Richard Arratia,et al.  On the Stanley-Wilf Conjecture for the Number of Permutations Avoiding a Given Pattern , 1999, Electron. J. Comb..

[69]  I. Gessel,et al.  Permutation statistics and partitions , 1979 .

[70]  Astrid Reifegerste On the diagram of 132-avoiding permutations , 2003, Eur. J. Comb..

[71]  Herbert S. Wilf,et al.  The patterns of permutations , 2002, Discret. Math..

[72]  Emeric Deutsch,et al.  A survey of the Fine numbers , 2001, Discret. Math..

[73]  M. Fekete Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .

[74]  Anders Claesson GENERALISED PATTERN AVOIDANCE , 2000 .

[75]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[76]  Maximal singular loci of Schubert varieties in $SL(n)/B$ , 2001, math/0102168.

[77]  Richard Ehrenborg,et al.  The Excedance Set of a Permutation , 2000, Adv. Appl. Math..

[78]  L. Carlitz,et al.  Enumeration of permutations by rises, falls, rising maxima and falling maxima , 1974 .

[79]  Julian West,et al.  Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..

[80]  Ira M. Gessel,et al.  Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.

[81]  Noga Alon,et al.  On the Number of Permutations Avoiding a Given Pattern , 2000, J. Comb. Theory, Ser. A.

[82]  Gregory S. Warrington,et al.  Kazhdan-Lusztig Polynomials for 321-Hexagon-Avoiding Permutations , 2000 .

[83]  Ian P. Goulden,et al.  Algebraic Methods for Permutations with Prescribed Patterns , 1981 .

[84]  T. Mansour,et al.  Some Statistics on Restricted 132 Involutions , 2002, math/0206169.

[85]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .