Research Methods in Daylighting and Electric Lighting

[1]  Christoph F. Reinhart,et al.  Lightswitch-2002: a model for manual and automated control of electric lighting and blinds , 2004 .

[2]  Andrew McNeil,et al.  A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems , 2013 .

[3]  Andrew T. Smith,et al.  Cortical hyperexcitability and sensitivity to discomfort glare , 2015, Neuropsychologia.

[4]  J. Hernández-Andrés,et al.  Color and spectral analysis of daylight in southern Europe. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Mehlika Inanici,et al.  An investigation of the daylighting simulation techniques and sky modeling practices for occupant centric evaluations , 2017 .

[6]  Mehlika Inanici,et al.  Evaluation of high dynamic range photography as a luminance data acquisition system , 2006 .

[7]  Adam Zakiy Hizbullah ANALISIS KECUKUPAN PENCAHAYAAN ALAMI PADA RUANG PAMERAN BANDUNG TECHNOPARK SESUAI STANDAR DOKUMEN IES-LM-83-12 SPATIAL DAYLIGHT AUTONOMY (SDA) DAN ANNUAL SUNLIGHT EXPOSURE (ASE) , 2019 .

[8]  Paul D. Gamlin,et al.  Measuring and using light in the melanopsin age , 2014, Trends in Neurosciences.

[9]  Mehlika Inanici,et al.  Deep neural network approach for annual luminance simulations , 2020, ArXiv.

[10]  Mark S. Rea,et al.  The Daysimeter: a device for measuring optical radiation as a stimulus for the human circadian system , 2005 .

[11]  Mehlika Inanici,et al.  A Critical Investigation of Common Lighting Design Metrics for Predicting Human Visual Comfort in Offices with Daylight , 2014 .

[12]  Mehlika Inanici Evalution of High Dynamic Range Image-Based Sky Models in Lighting Simulation , 2010 .

[13]  Yvonne A. W. de Kort,et al.  Tutorial: Theoretical Considerations When Planning Research on Human Factors in Lighting , 2019, LEUKOS.

[14]  N. H. Eklund,et al.  The Development of a Reliable, Valid, and Simple Office Lighting Survey , 1996 .

[15]  Alexa I Ruppertsberg,et al.  Rendering complex scenes for psychophysics using RADIANCE: how accurate can you get? , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Greg Ward,et al.  High dynamic range imaging , 2001, SIGGRAPH '04.

[17]  Mehlika Inanici,et al.  Measuring circadian lighting through high dynamic range photography , 2018, Lighting Research & Technology.

[18]  Eleanor S. Lee,et al.  Validation of the Five-Phase Method for Simulating Complex Fenestration Systems with Radiance against Field Measurements , 2017, Building Simulation Conference Proceedings.

[19]  Victoria Revell,et al.  A “Melanopic” Spectral Efficiency Function Predicts the Sensitivity of Melanopsin Photoreceptors to Polychromatic Lights , 2011, Journal of biological rhythms.

[20]  Gregory J. Ward,et al.  The RADIANCE lighting simulation and rendering system , 1994, SIGGRAPH.

[21]  R. G. Hopkinson,et al.  Glare from daylighting in buildings. , 1972, Applied ergonomics.

[22]  T. Partonen,et al.  CLOCK is suggested to associate with comorbid alcohol use and depressive disorders , 2010, Journal of circadian rhythms.

[23]  Ian L. Bailey,et al.  An Objective Measure of Discomfort Glare , 1994 .

[24]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.

[25]  Marilyne Andersen,et al.  Preliminary Method for Prospective Analysis of the Circadian Efficacy of (Day)Light with Applications to Healthcare Architecture , 2008 .

[26]  J. Veitch,et al.  Judging the Scientific Quality of Applied Lighting Research , 2019, LEUKOS.

[27]  John Mardaljevic,et al.  The BRE-IDMP dataset: a new benchmark for the validation of illuminance prediction techniques , 2001 .

[28]  Mark S. Rea,et al.  Relative visual performance: A basis for application , 1991 .

[29]  Christoph F. Reinhart Daylight performance predictions , 2019, Building Performance Simulation for Design and Operation.

[30]  F. X. Kneizys,et al.  AFGL (Air Force Geophysical Laboratory) atmospheric constituent profiles (0. 120km). Environmental research papers , 1986 .

[31]  Jean-François Lalonde,et al.  Human-centric lighting performance of shading panels in architecture: A benchmarking study with lab scale physical models under real skies , 2020 .

[32]  John Mardaljevic,et al.  Validation of a lighting simulation program under real sky conditions , 1995 .

[33]  K. Kelly,et al.  A different type of lighting research – A qualitative methodology , 2017 .

[34]  Siobhan Francois Rockcastle,et al.  An Experiment in Virtual Reality to Measure Daylight-Driven Interest in Rendered Architectural Scenes , 2017, Building Simulation Conference Proceedings.

[35]  Robin Drogemuller,et al.  Machine learning framework for developing glare predictive models , 2020 .

[36]  Michael Wimmer,et al.  Evaluation of HDR tone mapping methods using essential perceptual attributes , 2008, Comput. Graph..

[37]  John Mardaljevic,et al.  Dynamic Daylight Performance Metrics for Sustainable Building Design , 2006 .

[38]  Mehlika Inanici,et al.  Improving the Accuracy of Measurements in Daylit Interior Scenes Using High Dynamic Range Photography , 2016 .

[39]  Lars O. Grobe,et al.  Photon mapping in image-based visual comfort assessments with BSDF models of high resolution , 2019, Journal of Building Performance Simulation.

[40]  John D. Bullough,et al.  Circadian light , 2010, Journal of circadian rhythms.

[41]  Peter Boyce,et al.  Lighting quality and office work: two field simulation experiments , 2006 .

[42]  Andrew Jones,et al.  Direct HDR capture of the sun and sky , 2004, AFRIGRAPH '04.

[43]  G. Brainard,et al.  Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor , 2001, The Journal of Neuroscience.

[44]  Christoph F. Reinhart,et al.  Findings from a survey on the current use of daylight simulations in building design , 2006 .

[45]  Paul E. Debevec Image-Based Lighting , 2002, IEEE Computer Graphics and Applications.

[46]  P. Boyce,et al.  Age, illuminance, visual performance and preference , 1973 .

[47]  John Mardaljevic,et al.  Useful daylight illuminance: a new paradigm for assessing daylight in buildings , 2005 .

[48]  Christoph F. Reinhart,et al.  Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds , 2001 .

[49]  Peter Boyce,et al.  Human Factors in Lighting , 2014 .

[50]  Jan Wienold,et al.  Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras , 2006 .

[51]  Christoph F. Reinhart,et al.  Teaching Daylight Simulations – Improving Modeling Workflows for Simulations Novices , 2013 .

[52]  P. Tregenza,et al.  Daylight coefficients , 1983 .

[53]  G. Gescheider Psychophysics : method, theory, and application , 1985 .

[54]  Gregory Ward,et al.  Efficient modeling of optically-complex, non-coplanar exterior shading: Validation of matrix algebraic methods , 2018 .

[55]  Ian L. Bailey,et al.  The Influence of Spectral Composition on Discomfort Glare for Large-Size Sources , 1994 .

[56]  Veronica Garcia-Hansen,et al.  Subjective Assessments of Lighting Quality: A Measurement Review , 2019, LEUKOS.

[57]  Mehlika Inanici,et al.  Luminance Contrast as Depth Cue: Investigation and Design Applications , 2012 .

[58]  Peter Andreas Sattrup,et al.  The urban canyon and building energy use: Urban density versus daylight and passive solar gains , 2011 .

[59]  María Lovísa Ámundadóttir,et al.  Unified framework to evaluate non-visual spectral effectiveness of light for human health , 2017 .

[60]  J. Veitch Psychological Processes Influencing Lighting Quality , 2001 .

[61]  DR Bertenshaw,et al.  The standardisation of light and photometry – A historical review , 2020 .

[62]  Mohammed Ayoub,et al.  A review on machine learning algorithms to predict daylighting inside buildings , 2020, Solar Energy.

[63]  Christoph F. Reinhart,et al.  Experimental validation of ray tracing as a means of image-based visual discomfort prediction , 2017 .

[64]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[65]  John E. Flynn,et al.  A Guide to Methodology Procedures for Measuring Subjective Impressions in Lighting , 1979 .

[66]  Kynthia Chamilothori,et al.  Adequacy of Immersive Virtual Reality for the Perception of Daylit Spaces: Comparison of Real and Virtual Environments , 2019 .

[68]  D. Skene,et al.  An action spectrum for melatonin suppression: evidence for a novel non‐rod, non‐cone photoreceptor system in humans , 2001, The Journal of physiology.

[69]  R. Dogniaux,et al.  Glare from windows: current views of the problem , 1982 .

[70]  Marilyne Andersen,et al.  Integration of Eye-tracking Methods in Visual Comfort Assessments , 2011 .

[71]  John Mardaljevic,et al.  A framework for predicting the non-visual effects of daylight – Part II: The simulation model , 2014 .

[72]  J. Michalsky,et al.  All-weather model for sky luminance distribution—Preliminary configuration and validation , 1993 .

[73]  G. Ward,et al.  54.2: A High Dynamic Range Display Using Low and High Resolution Modulators , 2003 .

[74]  G. Newsham,et al.  A model of satisfaction with open-plan office conditions: COPE field findings , 2007 .

[75]  Jennifer A. Veitch,et al.  Determinants of Lighting Quality II: Research and Recommendations. , 1996 .

[76]  P. Boyce Human Factors in Lighting, Third Edition , 2014 .