Probability and Random Processes

tions. Bootstrap has found many applications in engineering field, including artificial neural networks, biomedical engineering, environmental engineering, image processing, and radar and sonar signal processing. Basic concepts of the bootstrap are summarized in each section as a step-by-step algorithm for ease of implementation. Most of the applications are taken from the signal processing literature. The principles of the bootstrap are introduced in Chapter 2. Both the nonparametric and parametric bootstrap procedures are explained. Babu and Singh (1984) have demonstrated that in general, these two procedures behave similarly for pivotal (Studentized) statistics. The fact that the bootstrap is not the solution for all of the problems has been known to statistics community for a long time; however, this fact is rarely touched on in the manuscripts meant for practitioners. It was first observed by Babu (1984) that the bootstrap does not work in the infinite variance case. Bootstrap Techniques for Signal Processing explains the limitations of bootstrap method with an example. I especially liked the presentation style. The basic results are stated without proofs; however, the application of each result is presented as a simple step-by-step process, easy for nonstatisticians to follow. The bootstrap procedures, such as moving block bootstrap for dependent data, along with applications to autoregressive models and for estimation of power spectral density, are also presented in Chapter 2. Signal detection in the presence of noise is generally formulated as a testing of hypothesis problem. Chapter 3 introduces principles of bootstrap hypothesis testing. The topics are introduced with interesting real life examples. Flow charts, typical in engineering literature, are used to aid explanations of the bootstrap hypothesis testing procedures. The bootstrap leads to second-order correction due to pivoting; this improvement in the results due to pivoting is also explained. In the second part of Chapter 3, signal processing is treated as a regression problem. The performance of the bootstrap for matched filters as well as constant false-alarm rate matched filters is also illustrated. Chapters 2 and 3 focus on estimation problems. Chapter 4 introduces bootstrap methods used in model selection. Due to the inherent structure of the subject matter, this chapter may be difficult for nonstatisticians to follow. Chapter 5 is the most impressive chapter in the book, especially from the standpoint of statisticians. It provides real data bootstrap applications to illustrate the theory covered in the earlier chapters. These include applications to optimal sensor placement for knock detection and land-mine detection. The authors also provide a MATLAB toolbox comprising frequently used routines. Overall, this is a very useful handbook for engineers, especially those working in signal processing.