On a class of left-continuous uninorms constructed from the representable uninorm

[1]  Bernard De Baets,et al.  Residual operators of uninorms , 1999, Soft Comput..

[2]  Radko Mesiar,et al.  On the Relationship of Associative Compensatory operators to triangular Norms and Conorms , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[3]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[4]  Joan Torrens,et al.  A characterization of residual implications derived from left-continuous uninorms , 2010, Inf. Sci..

[5]  Pawel Drygas,et al.  Discussion of the structure of uninorms , 2005, Kybernetika.

[6]  Bernard De Baets,et al.  Rotation and rotation-annihilation construction of associative and partially compensatory aggregation operators , 2004, IEEE Transactions on Fuzzy Systems.

[7]  Huawen Liu,et al.  On properties of uninorms locally internal on the boundary , 2018, Fuzzy Sets Syst..

[8]  Ronald R. Yager,et al.  Uninorms in fuzzy systems modeling , 2001, Fuzzy Sets Syst..

[9]  Sándor Jenei,et al.  How to construct left-continuous triangular norms--state of the art , 2004, Fuzzy Sets Syst..

[10]  Huawen Liu,et al.  Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm , 2016, Fuzzy Sets Syst..

[11]  Huawen Liu,et al.  Single-Point Characterization of Uninorms with Nilpotent Underlying T-Norm and T-Conorm , 2014, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[12]  A. H. Clifford,et al.  Naturally Totally Ordered Commutative Semigroups , 1954 .

[13]  Andrea Mesiarová-Zemánková,et al.  Characterization of Uninorms With Continuous Underlying T-norm and T-conorm by Their Set of Discontinuity Points , 2015, IEEE Transactions on Fuzzy Systems.

[14]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[15]  Joan Torrens,et al.  RU and (U, N)-implications satisfying Modus Ponens , 2016, Int. J. Approx. Reason..

[16]  Márta Takács,et al.  Uninorm-based models for FLC systems , 2008, J. Intell. Fuzzy Syst..

[17]  Shi-kai Hu,et al.  The structure of continuous uni-norms , 2001, Fuzzy Sets Syst..

[18]  Bernard De Baets,et al.  Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof , 1999, Fuzzy Sets Syst..

[19]  Bernard De Baets,et al.  A single-point characterization of representable uninorms , 2012, Fuzzy Sets Syst..

[20]  Ronald R. Yager,et al.  Bipolar aggregation using the Uninorms , 2011, Fuzzy Optim. Decis. Mak..

[21]  Franco Montagna,et al.  On a class of left-continuous t-norms , 2002, Fuzzy Sets Syst..

[22]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[23]  Joan Torrens,et al.  A characterization of a class of uninorms with continuous underlying operators , 2016, Fuzzy Sets Syst..

[24]  J. Dombi Basic concepts for a theory of evaluation: The aggregative operator , 1982 .

[25]  Joan Torrens,et al.  A survey on the existing classes of uninorms , 2015, J. Intell. Fuzzy Syst..