Total k-rainbow domination subdivision number in graphs

A total k-rainbow dominating function (TkRDF) of G is a function f from the vertex set V (G) to the set of all subsets of the set {1, . . . , k} such that (i) for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, . . . , k} is fulfilled, where N(v) is the open neighborhood of v, and (ii) the subgraph of G induced by {v ∈ V (G) | f(v) 6= ∅} has no isolated vertex. The total k-rainbow domination number, γtrk(G), is the minimum weight of a TkRDF on G. The total k-rainbow domination subdivision number sdγtrk(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total k-rainbow domination number. In this paper, we initiate the study of total k-rainbow domination subdivision number in graphs and we present sharp bounds for sdγtrk(G). In addition, we determine the total 2-rainbow domination subdivision number of complete bipartite graphs and show that the total 2-rainbow domination subdivision number can be arbitrary large.

[1]  Jafar Amjadi Total Roman domination subdivision number in graphs , 2020 .

[2]  Seyed Mahmoud Sheikholeslami,et al.  Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph , 2011, Appl. Math. Lett..

[3]  Zehui Shao,et al.  On the Roman domination subdivision number of a graph , 2020, J. Comb. Optim..

[4]  Seyed Mahmoud Sheikholeslami,et al.  Roman domination subdivision number of graphs , 2009 .

[5]  Vladimir Samodivkin,et al.  Total $k$-Rainbow domination numbers in graphs , 2018 .

[6]  Michael A. Henning,et al.  RAINBOW DOMINATION IN GRAPHS , 2008 .

[7]  H. Abdollahzadeh Ahangar,et al.  Graphs with Large Total 2-Rainbow Domination Number , 2018 .

[8]  Yuansheng Yang,et al.  2-rainbow domination of generalized Petersen graphs P(n, 2) , 2009, Discret. Appl. Math..

[9]  Jochen Harant,et al.  On Domination in Graphs , 2005, Discuss. Math. Graph Theory.

[10]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[11]  Seyed Mahmoud Sheikholeslami,et al.  The k-rainbow domatic number of a graph , 2012, Discuss. Math. Graph Theory.

[12]  Seyed Mahmoud Sheikholeslami,et al.  Total 2-rainbow domination numbers in trees , 2021, Discuss. Math. Graph Theory.

[13]  Seyed Mahmoud Sheikholeslami,et al.  The convex domination subdivision number of a graph , 2016 .

[14]  Seyed Mahmoud Sheikholeslami,et al.  Weakly convex domination subdivision number of a graph , 2016 .

[15]  Tadeja Kraner Sumenjak,et al.  On the 2-rainbow domination in graphs , 2007, Discret. Appl. Math..

[16]  Seyed Mahmoud Sheikholeslami,et al.  On the rainbow domination subdivision numbers in graphs , 2016 .

[17]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[18]  Seyed Mahmoud Sheikholeslami,et al.  Bounding the total domination subdivision number of a graph in terms of its order , 2011, J. Comb. Optim..

[19]  Seyed Mahmoud Sheikholeslami,et al.  New Bounds on the Rainbow Domination Subdivision Number , 2014 .

[20]  Seyed Mahmoud Sheikholeslami,et al.  Domination subdivision numbers of trees , 2009, Discret. Math..

[21]  J. Amjadi,et al.  A sufficient condition for large rainbow domination number , 2017, Int. J. Comput. Math. Comput. Syst. Theory.

[22]  Seyed Mahmoud Sheikholeslami,et al.  On the total domination subdivision numbers in graphs , 2010 .

[23]  S. M. Sheikholeslami,et al.  DOUBLY CONNECTED DOMINATION SUBDIVISION NUMBERS OF GRAPHS , 2012 .

[24]  Xuding Zhu,et al.  Rainbow domination on trees , 2010, Discret. Appl. Math..

[25]  Seyed Mahmoud Sheikholeslami,et al.  On two conjectures concerning total domination subdivision number in graphs , 2019, J. Comb. Optim..