Analyzing and Biasing Simulations with PLUMED.

This chapter discusses how the PLUMED plugin for molecular dynamics can be used to analyze and bias molecular dynamics trajectories. The chapter begins by introducing the notion of a collective variable and by then explaining how the free energy can be computed as a function of one or more collective variables. A number of practical issues mostly around periodic boundary conditions that arise when these types of calculations are performed using PLUMED are then discussed. Later parts of the chapter discuss how PLUMED can be used to perform enhanced sampling simulations that introduce simulation biases or multiple replicas of the system and Monte Carlo exchanges between these replicas. This section is then followed by a discussion on how free-energy surfaces and associated error bars can be extracted from such simulations by using weighted histogram and block averaging techniques.

[1]  Benoît Roux,et al.  Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations , 2001 .

[2]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[3]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[4]  C. Bartels Analyzing biased Monte Carlo and molecular dynamics simulations , 2000 .

[5]  Fabrizio Marinelli,et al.  Ensemble-Biased Metadynamics: A Molecular Simulation Method to Sample Experimental Distributions. , 2015, Biophysical journal.

[6]  Gabriel Stoltz,et al.  Computation of free energy profiles with parallel adaptive dynamics. , 2007, The Journal of chemical physics.

[7]  Giovanni Bussi,et al.  Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering , 2015, Journal of chemical theory and computation.

[8]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[9]  M. Vendruscolo,et al.  Statistical mechanics of the denatured state of a protein using replica-averaged metadynamics. , 2014, Journal of the American Chemical Society.

[10]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[11]  E. Vanden-Eijnden,et al.  A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations , 2006 .

[12]  Giovanni Bussi,et al.  Unraveling Mg2+–RNA binding with atomistic molecular dynamics , 2016, RNA.

[13]  Gregory A Voth,et al.  A Combined Metadynamics and Umbrella Sampling Method for the Calculation of Ion Permeation Free Energy Profiles. , 2011, Journal of chemical theory and computation.

[14]  A. Laio,et al.  A bias-exchange approach to protein folding. , 2007, The journal of physical chemistry. B.

[15]  Haohao Fu,et al.  Extended Adaptive Biasing Force Algorithm. An On-the-Fly Implementation for Accurate Free-Energy Calculations. , 2016, Journal of chemical theory and computation.

[16]  Gareth A. Tribello,et al.  Solid-liquid interfacial free energy out of equilibrium , 2015, 1511.08668.

[17]  Gregory A Voth,et al.  Coarse-Grained Directed Simulation. , 2017, Journal of chemical theory and computation.

[18]  Alessandro Laio,et al.  Protein Folding and Ligand-Enzyme Binding from Bias-Exchange Metadynamics Simulations , 2012 .

[19]  Massimiliano Bonomi,et al.  Metainference: A Bayesian inference method for heterogeneous systems , 2015, Science Advances.

[20]  Massimiliano Bonomi,et al.  PLUMED 2: New feathers for an old bird , 2013, Comput. Phys. Commun..

[21]  Massimiliano Bonomi,et al.  Reconstructing the equilibrium Boltzmann distribution from well‐tempered metadynamics , 2009, J. Comput. Chem..

[22]  Giovanni Bussi,et al.  Empirical Corrections to the Amber RNA Force Field with Target Metadynamics , 2016, Journal of chemical theory and computation.

[23]  Massimiliano Bonomi,et al.  PLUMED: A portable plugin for free-energy calculations with molecular dynamics , 2009, Comput. Phys. Commun..

[24]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[25]  M. Parrinello,et al.  Enhanced sampling in the well-tempered ensemble. , 2009, Physical review letters.

[26]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[27]  Giovanni Bussi,et al.  Combining Simulations and Solution Experiments as a Paradigm for RNA Force Field Refinement. , 2016, Journal of chemical theory and computation.

[28]  Vojtěch Spiwok,et al.  Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap. , 2011, The Journal of chemical physics.

[29]  Giovanni Bussi,et al.  Accurate multiple time step in biased molecular simulations. , 2014, Journal of chemical theory and computation.

[30]  B. Ensing,et al.  Path finding on high-dimensional free energy landscapes. , 2012, Physical review letters.

[31]  Vojtech Spiwok,et al.  Metadynamics in essential coordinates: free energy simulation of conformational changes. , 2007, The journal of physical chemistry. B.

[32]  M. Parrinello,et al.  Metadynamics with Adaptive Gaussians. , 2012, Journal of chemical theory and computation.

[33]  Michele Ceriotti,et al.  Recognizing molecular patterns by machine learning: an agnostic structural definition of the hydrogen bond. , 2014, The Journal of chemical physics.

[34]  Massimiliano Bonomi,et al.  Efficient Sampling of High-Dimensional Free-Energy Landscapes with Parallel Bias Metadynamics. , 2015, Journal of chemical theory and computation.

[35]  Martin Karplus,et al.  Probability Distributions for Complex Systems: Adaptive Umbrella Sampling of the Potential Energy , 1998 .

[36]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[37]  Gregory A Voth,et al.  Designing free energy surfaces that match experimental data with metadynamics. , 2015, Journal of chemical theory and computation.

[38]  Alessandro Laio,et al.  Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. , 2003, Physical review letters.

[39]  Wei Chen,et al.  Molecular enhanced sampling with autoencoders: On-the-fly nonlinear collective variable discovery and accelerated free energy landscape exploration , 2018 .

[40]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[41]  Z. Tan,et al.  Theory of binless multi-state free energy estimation with applications to protein-ligand binding. , 2012, The Journal of chemical physics.

[42]  Massimiliano Bonomi,et al.  Integrative structural and dynamical biology with PLUMED-ISDB , 2017, Bioinform..

[43]  Grant M. Rotskoff,et al.  Transition-Tempered Metadynamics: Robust, Convergent Metadynamics via On-the-Fly Transition Barrier Estimation. , 2014, Journal of chemical theory and computation.

[44]  M. Zacharias,et al.  Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach. , 2009, The Journal of chemical physics.

[45]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[46]  A. Laio,et al.  Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. , 2006, Journal of the American Chemical Society.

[47]  Daniel R. Reid,et al.  SSAGES: Software Suite for Advanced General Ensemble Simulations. , 2018, The Journal of chemical physics.

[48]  Toni Giorgino PLUMED-GUI: An environment for the interactive development of molecular dynamics analysis and biasing scripts , 2014, Comput. Phys. Commun..

[49]  I. Jolliffe Principal Component Analysis , 2002 .

[50]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Parrinello,et al.  From metadynamics to dynamics. , 2013, Physical review letters.

[52]  M. Karplus,et al.  Effective energy function for proteins in solution , 1999, Proteins.

[53]  Darrin M. York,et al.  Improvement of DNA and RNA Sugar Pucker Profiles from Semiempirical Quantum Methods , 2014, Journal of chemical theory and computation.

[54]  Michele Parrinello,et al.  Analyzing and Driving Cluster Formation in Atomistic Simulations. , 2017, Journal of chemical theory and computation.

[55]  M. Tuckerman,et al.  Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations. , 2008, The journal of physical chemistry. B.

[56]  Martin T. Dove,et al.  DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism , 2006 .

[57]  Alessandro Laio,et al.  A Collective Variable for the Efficient Exploration of Protein Beta-Sheet Structures: Application to SH3 and GB1. , 2009, Journal of chemical theory and computation.

[58]  Francesco Luigi Gervasio,et al.  From A to B in free energy space. , 2007, The Journal of chemical physics.

[59]  Francesco Luigi Gervasio,et al.  Comparing the Efficiency of Biased and Unbiased Molecular Dynamics in Reconstructing the Free Energy Landscape of Met-Enkephalin , 2010 .

[60]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[61]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[62]  Vojtěch Spiwok,et al.  Altruistic Metadynamics: Multisystem Biased Simulation. , 2016, The journal of physical chemistry. B.

[63]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[64]  Giovanni Bussi,et al.  Free Energy Landscape of GAGA and UUCG RNA Tetraloops. , 2016, The journal of physical chemistry letters.

[65]  B. Peters Reaction Coordinates and Mechanistic Hypothesis Tests. , 2016, Annual review of physical chemistry.

[66]  K. Schulten,et al.  Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. , 1997, Biophysical journal.

[67]  Gerhard Hummer,et al.  Native contacts determine protein folding mechanisms in atomistic simulations , 2013, Proceedings of the National Academy of Sciences.

[68]  D. Cremer,et al.  General definition of ring puckering coordinates , 1975 .

[69]  M. Parrinello,et al.  A time-independent free energy estimator for metadynamics. , 2015, The journal of physical chemistry. B.

[70]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[71]  Giacomo Fiorin,et al.  Using collective variables to drive molecular dynamics simulations , 2013 .

[72]  Mohammad M. Sultan,et al.  Transferable Neural Networks for Enhanced Sampling of Protein Dynamics. , 2018, Journal of chemical theory and computation.

[73]  Michele Parrinello,et al.  Simplifying the representation of complex free-energy landscapes using sketch-map , 2011, Proceedings of the National Academy of Sciences.

[75]  Vijay S Pande,et al.  tICA-Metadynamics: Accelerating Metadynamics by Using Kinetically Selected Collective Variables. , 2017, Journal of chemical theory and computation.

[76]  Jiří Vondrášek,et al.  Gyration- and inertia-tensor-based collective coordinates for metadynamics. Application on the conformational behavior of polyalanine peptides and Trp-cage folding. , 2011, The journal of physical chemistry. A.

[77]  Michele Parrinello,et al.  Variational approach to enhanced sampling and free energy calculations. , 2014, Physical review letters.

[78]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[79]  Gregory A Voth,et al.  Efficient and Minimal Method to Bias Molecular Simulations with Experimental Data. , 2014, Journal of chemical theory and computation.

[80]  Michele Parrinello,et al.  Well-tempered metadynamics converges asymptotically. , 2014, Physical review letters.

[81]  Y. Sugita,et al.  Free energy calculations for DNA base stacking by replica-exchange umbrella sampling , 2004 .

[82]  Wei Yang,et al.  Practically Efficient and Robust Free Energy Calculations: Double-Integration Orthogonal Space Tempering. , 2012, Journal of chemical theory and computation.

[83]  Giovanni Bussi,et al.  Molecular Dynamics Simulations Reveal an Interplay between SHAPE Reagent Binding and RNA Flexibility , 2017, The journal of physical chemistry letters.

[84]  Giovanni Bussi,et al.  RNA/Peptide Binding Driven by Electrostatics-Insight from Bidirectional Pulling Simulations. , 2013, Journal of chemical theory and computation.

[85]  A. Laio,et al.  Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. , 2006, The journal of physical chemistry. B.

[86]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[87]  Michele Parrinello,et al.  Well-Tempered Variational Approach to Enhanced Sampling. , 2015, Journal of chemical theory and computation.

[88]  Michele Parrinello,et al.  Using sketch-map coordinates to analyze and bias molecular dynamics simulations , 2012, Proceedings of the National Academy of Sciences.