On Effectively Indiscernible Projective Sets and the Leibniz-Mycielski Axiom
暂无分享,去创建一个
[1] A. Kechris. Classical descriptive set theory , 1987 .
[2] Vassily A. Lyubetsky,et al. Definable Minimal collapse Functions at Arbitrary Projective Levels , 2019, J. Symb. Log..
[3] A. Tarski,et al. Sur les ensembles définissables de nombres réels , 1931 .
[4] P. Howard,et al. Consequences of the axiom of choice , 1998 .
[5] Horst Herrlich,et al. Axiom of Choice , 2006 .
[6] Vladimir Kanovei. On a Glimm -- Effros dichotomy and an Ulm--type classification in Solovay model , 1995 .
[7] Vladimir Kanovei. An Ulm-Type Classification Theorem for Equivalence Relations in Solovay Model , 1997, J. Symb. Log..
[8] V. Kanovei,et al. On the ‘Definability of Definable’ Problem of Alfred Tarski , 2020, Mathematics.
[9] Vladimir Kanovei,et al. A countable definable set containing no definable elements , 2017 .
[10] Vassily A. Lyubetsky,et al. Definable E0 classes at arbitrary projective levels , 2018, Ann. Pure Appl. Log..
[11] Vladimir Kanovei,et al. On some classical problems of descriptive set theory , 2003 .
[13] Vassily A. Lyubetsky,et al. A Groszek-Laver pair of undistinguishable E0-classes , 2017, Math. Log. Q..
[14] Sy D. Friedman. Constructibility and Class Forcing , 2010 .
[15] Alfred Tarski,et al. A problem concerning the notion of definability , 1948, Journal of Symbolic Logic.
[16] P. J. Cohen. Set Theory and the Continuum Hypothesis , 1966 .
[17] Alfred Tarski,et al. Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .
[18] Joel David Hamkins,et al. Ehrenfeucht's Lemma in Set Theory , 2018, Notre Dame J. Formal Log..
[19] A. Tarski,et al. What are logical notions , 1986 .
[20] John W. Addison,et al. Tarski's theory of definability: common themes in descriptive set theory, recursive function theory, classical pure logic, and finite-universe logic , 2004, Ann. Pure Appl. Log..
[21] Vladimir Kanovei,et al. Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali classes , 2018 .
[22] Andrei Alexandru,et al. Foundations of Finitely Supported Structures: A Set Theoretical Viewpoint , 2020 .
[23] V. Kanovei,et al. Models of Set Theory in which Nonconstructible Reals First Appear at a Given Projective Level , 2020, Mathematics.
[24] Ali Enayat. Leibnizian models of set theory , 2004, J. Symb. Log..
[25] Richard Laver,et al. Finite groups ofOD-conjugates , 1987 .
[26] James Halpern. On a question of Tarski and a maximal theorem of Kurepa , 1972 .
[27] Asaf Karagila,et al. The Bristol model: An abyss called a Cohen real , 2017, J. Math. Log..
[28] Vladimir Kanovei,et al. A definable E0 class containing no definable elements , 2015, Arch. Math. Log..
[29] Arnold W. Miller,et al. Rational perfect set forcing , 1984 .
[30] Marcin Sabok,et al. Canonical Ramsey Theory on Polish Spaces , 2013 .
[31] The Implicitly Constructible Universe , 2019, J. Symb. Log..
[32] Ali Enayat. On the Leibniz–Mycielski axiom in set theory , 2004 .
[33] J. Hadamard,et al. Cinq lettres sur la théorie des ensembles , 1905 .
[34] Jan Mycielski. New Set-Theoretic Axioms Derived from a Lean Metamathematics , 1995, J. Symb. Log..
[35] Sy-David Friedman,et al. A model of second-order arithmetic satisfying AC but not DC , 2019, J. Math. Log..
[36] Ronald Jensen. Definable Sets of Minimal Degree , 1970 .