MODELING UNSTEADY MONOPROPELLANT COMBUSTION WITH FULL CHEMICAL KINETICS

A numerical model has been developed to calculate the unsteady combustion of single ingredient monopropellants with imposed pressure and radiant heat flux oscillations. A complex multi-species gas phase chemical kinetics mechanism has been implemented. Competing condensed phase decomposition and surface evaporation reactions were included, as well as in-depth radiation absorption. The model has been applied to RDX combustion at one atmosphere mean pressure with an imposed sinusoidal pressure perturbation. The pressure coupled response function and acoustic admittance function were calculated. Comparison was made with traditional quasi-steady pressure coupled response (ZN approach). A high frequency peak was observed and attributed to unsteady gas phase effects.

[1]  J. C. Friedly,et al.  Influence of combustion parameters on instability in solid propellant motors. I - Development of model and linear analysis. , 1966 .

[2]  N. Ermolin Model for chemical reaction kinetics in perchloric acid-ammonia flames , 1995 .

[3]  R. Yetter,et al.  Development of Gas-Phase Reaction Mechanisms for Nitramine Combustion , 1995 .

[4]  Charles K. Westbrook,et al.  A generalized ICE method for chemically reactive flows in combustion systems , 1978 .

[5]  Michael M. Micci,et al.  Direct measurement of high frequency, solid propellant, pressure-coupled admittances , 1987 .

[6]  Michael M. Micci,et al.  Unsteady Gas Phase Analysis of Homogeneous Solid Propellant Combustion , 1991 .

[7]  G. Edwards The vapour pressure of cyclo-trimethylene-trinitramine (cyclonite) and pentaerythritol-tetranitrate , 1953 .

[8]  F. Williams,et al.  A model of ammonium perchlorate deflagration between 20 and 100 atm , 1971 .

[9]  J. Hoffman Numerical Methods for Engineers and Scientists , 2018 .

[10]  Eric Baum,et al.  A Simplified Model of Unstable Burning in Solid Propellants , 1961 .

[11]  Stephen B. Margolis,et al.  Diffusional/Thermal Coupling and Intrinsic Instability of Solid Propellant Combustion , 1988 .

[12]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[13]  P. Kuentzmann,et al.  Response of a solid propellant to pressure oscillations , 1974 .

[14]  James S. T'ien,et al.  Nonsteady burning phenomena of solid propellants - theory and experiments , 1968 .

[15]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[16]  V. Yang,et al.  Effects of acoustic oscillations on flame dynamics of homogeneous propellants in rocket motors , 1995 .

[17]  A. A. Amsden,et al.  A numerical fluid dynamics calculation method for all flow speeds , 1971 .

[18]  Fred E. C. Culick,et al.  Calculation of the Admittance Function for a Burning Surface , 1967 .

[19]  James S. T'ien,et al.  Oscillatory burning of solid propellants including gas phase time lag. , 1972 .

[20]  R. Yetter,et al.  An eigenvalue method for computing the burning rates of HMX propellants , 1998 .

[21]  B. Novozhilov Nonstationary burning of propellants with variable surface temperature , 1967 .

[22]  Fred E. C. Culick,et al.  A review of calculations for unsteady burning of a solid propellant. , 1968 .

[23]  N. Ermolin Kinetic parameters of overall gas-phase reactions for propellants based on ammonium perchlorate and polybutadiene binder , 1993 .

[24]  V. Yang,et al.  Combustion of a double-base homogeneous propellant in a rocket motor , 1994 .

[25]  Richard A. Yetter,et al.  An Eigenvalue Method for Computing the Burning Rates of RDX Propellants , 1997 .

[26]  C. Melius Thermochemical Modeling: II. Application to Ignition and Combustion of Energetic Materials , 1990 .

[27]  V. V. Tsvetkov,et al.  Causes of liquid phase migration in powdered metal materials during consolidation by self-propagating high-temperature synthesis , 1995 .

[28]  Y. Lu,et al.  MODELING AND NUMERICAL SIMULATION OF PHYSICOCHEMICAL PROCESSES OCCURRING IN THE TWO-PHASE FOAM LAYER OF BURNING RDX , 1997 .

[29]  A. Zenin HMX and RDX - Combustion mechanism and influence on modern double-base propellant combustion , 1995 .

[30]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[31]  Vigor Yang,et al.  Analysis of RDX Monopropellant Combustion with Two-Phase Subsurface Reactions , 1995 .

[32]  B. Novozhilov Burning of a powder under harmonically varying pressure , 1965 .

[33]  F. T. McClure,et al.  Combustion Instability: Acoustic Interaction with a Burning Propellant Surface , 1959 .

[34]  M. Beckstead,et al.  A numerical model of monopropellant deflagration under unsteady conditions , 1996 .

[35]  Steven F. Son,et al.  Linear Burning Rate Dynamics of Solids Subjected to Pressure or External Radiant Heat Flux Oscillations , 1993 .

[36]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[37]  Paul Clavin,et al.  Theoretical Analysis of Oscillatory Burning of Homogeneous Solid Propellant Including Non-Steady Gas Phase Effects , 1992 .

[38]  T. Brill Multiphase chemistry considerations at the surface of burning nitramine monopropellants , 1995 .

[39]  Jay N. Levine,et al.  Nonlinear Analysis of Solid Rocket Combustion Instability. Volume II. , 1974 .

[40]  T. Parr,et al.  Laser recoil, plume emission, and flame height combustion response of HMX and RDX at atmospheric pressure , 1994 .

[41]  Merrill W. Beckstead,et al.  A three-phase model of HMX combustion , 1996 .

[42]  Merrill Beckstead,et al.  A three-phase combustion model of ammonium perchlorate , 1996 .