Probing interface properties of nanocomposites by third-order nonlinear optics

We describe the exploitation of third-order nonlinear optical response — particularly nonlinear absorption and the nonlinear index of refraction — to probe interface dynamics, modifications and relaxation processes in granular materials consisting of metal quantum dots embedded in such dielectrics as fused silica and sapphire. Many features of these materials can be interpreted in terms of the quantum-mechanical model of the “particle-in-a-box”. Electronic and thermal relaxation processes in these novel nanocomposites are dominated by interactions of conduction-band electrons at the boundary between the quantum dot and its surrounding host material. Experimental examples presented include measurements of thermal and electronic relaxation rates, dephasing due to electron collisions at the nanocluster surface, effects of local structural order, changes in the saturation parameter due to chemical modification of the substrate, and one-and two-dimensional heat-transfer effects.

[1]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[2]  P. Roussignol,et al.  Surface-mediated enhancement of optical phase conjugation in metal colloids. , 1985, Optics letters.

[3]  D. M. Wood,et al.  Quantum size effects in the optical properties of small metallic particles , 1982 .

[4]  G. Stegeman,et al.  Degenerate four‐wave mixing in planar CS2 covered waveguides , 1985 .

[5]  P. Dumas,et al.  Raman spectral characterization of pure and fluorine‐doped vitreous silica material , 1982 .

[6]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[7]  R. Zuhr,et al.  Picosecond nonlinear optical response of a Cu:silica nanocluster composite. , 1993, Optics letters.

[8]  Kolář,et al.  Transition to plasmonlike absorption in small Hg clusters. , 1992, Physical review letters.

[9]  U. Kreibig,et al.  OPTICAL ABSORPTION OF SMALL METALLIC PARTICLES , 1985 .

[10]  H. Hosono,et al.  Coalescence of nanosized copper colloid particles formed in Cu‐implanted SiO2 glass by implantation of fluorine ions: Formation of violet copper colloids , 1992 .

[11]  J. McCallum,et al.  Modification of The Optical Properties of Al 2 O 3 by Ion Implantation , 1992 .

[12]  A Marker,et al.  Properties and Characteristics of Optical Glass III , 1994 .

[13]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .

[14]  Amnon Yariv,et al.  Four wave nonlinear optical mixing as real time holography , 1978 .

[15]  Robert H. Magruder,et al.  Structure property relationships of nanometer-size metal clusters in glasses , 1993, Optics & Photonics.

[16]  P. Roussignol,et al.  V Nonlinear Optics in Composite Materials: 1. Semiconductor and Metal Crystallites in Dielectrics: 1. Semiconductor and Metal Crystallites in Dielectrics , 1991 .

[17]  David A. B. Miller,et al.  Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. , 1987, Physical review. B, Condensed matter.

[18]  Robert R. Alfano,et al.  Size dependence of the third-order susceptibility of copper nanoclusters investigated by four-wave mixing , 1994 .

[19]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[20]  Richard F. Haglund,et al.  Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica , 1994 .

[21]  U. Kreibig The transition cluster-solid state in small gold particles , 1978 .

[22]  A. Smirl,et al.  Theory of degenerate four-wave mixing in picosecond excitation-probe experiments , 1983 .

[23]  Robert R. Alfano,et al.  Optical properties of gold nanocluster composites formed by deep ion implantation in silica , 1993 .

[24]  J. H. Weaver,et al.  Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental , 1974 .

[25]  P. N. Butcher,et al.  The Elements of Nonlinear Optics: Preface , 1990 .

[26]  P. D. Townsend,et al.  Optical effects of ion implantation , 1987 .

[27]  R. Alfano,et al.  Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation , 1994 .

[28]  François Hache,et al.  Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects , 1986 .

[29]  J. McCallum,et al.  Colloidal Au and Ag precipitates formed in Al2O3 by ion implantation and annealing , 1993 .

[30]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .