Sensors for Corrosion Detection: Measurement of Copper Ions in 3.5% Sodium Chloride Using Screen-Printed Platinum Electrodes

Planar screen-printed platinum electrodes developed for use in corrosion monitoring have been evaluated using cyclic differential pulse voltammetry and shown to detect cupric ions (Cu2+) over a range up to 100 mM in a background of 3.5% by weight sodium chloride solution. The reduction of Cu2+ to metallic copper is shown to proceed as two successive single-electron transfer reactions involving an intermediate chemical step where the cuprous ion (Cu+) is complexed by chloride to form the dichlorocuprous anion CuCl2-. By comparison, the complexation step during the oxidation of copper to Cu2+ can involve a number of different chlorocopper(I) complexes of the general form [CuCl(n+1)]n- depending on the chloride concentration, which can make detection via a stripping reaction difficult.

[1]  Gareth Kear,et al.  Electrochemical corrosion of unalloyed copper in chloride media––a critical review , 2004 .

[2]  Lauro T. Kubota,et al.  Application of self-assembled monolayer-based electrode for voltammetric determination of copper , 2004 .

[3]  Nick Harris,et al.  Screen-printed potentiometric Ag/AgCl chloride sensors: Lifetime performance and their use in soil salt measurements , 2011 .

[4]  F. Millero,et al.  Effect of chloride ion and ionic strength on the response of a copper(II) ion-selective electrode , 1977 .

[5]  Vinod K. Gupta,et al.  Preparation of ethambutol-copper(II) complex and fabrication of PVC based membrane potentiometric sensor for copper. , 2003, Talanta.

[6]  A. Williams-Jones,et al.  Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300°C and saturated water vapor pressure , 1998 .

[7]  John Atkinson,et al.  An investigation of the performance characteristics and operational lifetimes of multi-element thick film sensor arrays used in the determination of water quality parameters , 1999 .

[8]  Ahsan Habib,et al.  Cyclic voltammetric studies of copper and manganese in the presence of L-leucine using glassy carbon electrode , 2006 .

[9]  F. Walsh,et al.  Research and Development Techniques 1: Potentiodynamic Studies of Copper Metal Deposition , 2003 .

[10]  Eric Bakker,et al.  Electrochemical sample matrix elimination for trace-level potentiometric detection with polymeric membrane ion-selective electrodes. , 2008, Analytical chemistry.

[11]  Vinod K. Gupta,et al.  Cu(II) selective sensor based on 5,7,12,14-tetramethyldibenzo[b,i]-1,4,8,11-tetraazacyclotetradecane in PVC matrix , 2003 .

[12]  R. Koncki,et al.  Screen-printed copper ion-selective electrodes , 2000, Fresenius' journal of analytical chemistry.

[13]  K. Stokes,et al.  The influence of nickel–aluminium bronze microstructure and crevice solution on the initiation of crevice corrosion , 2008 .

[14]  J. Safari,et al.  Coated-wire copper(II)-selective electrode based on phenylglyoxal-α-monoxime ionophore , 2002 .

[15]  Libuse Trnkova,et al.  Study of Copper and Purine-Copper Complexes on Modified Carbon Electrodes by Cyclic and Elimination Voltammetry , 2008, Sensors.

[16]  Jiujun Zhang,et al.  Graphite electrodes modified by 8-hydroxyquinolines and its application for the determination of copper in trace levels , 2006 .

[17]  A. Abbaspour,et al.  Chemically modified carbon paste electrode for determination of copper(II) by potentiometric method. , 2002, Talanta.

[18]  A. Srivastava,et al.  Coated Wire Copper(II) Ion Selective Electrode Based On 5,6,14,15‐Dibenzo‐1,4‐dioxa‐8,12‐diazacyclopentadeca‐5,14‐diene , 2002 .

[19]  K. Stokes,et al.  Analysis of nickel–aluminium bronze crevice solution chemistry using capillary electrophoresis , 2007 .

[20]  M. Ganjali,et al.  Novel Copper(II)-Selective Sensor Based on a New Hexadentates Schiff's Base , 2002 .

[21]  F. Millero The Physical Chemistry of Seawater , 1974 .

[22]  M. Muhammed,et al.  Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions III. The system Cu(I,II) −Cl− −e at 298.15 K , 1997 .

[23]  G. Weir,et al.  Calculating chemical concentrations during the initiation of crevice corrosion , 2000 .

[24]  Heinrich Lang,et al.  Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix , 2006 .

[25]  L. Olenic,et al.  Free Base Porphyrins as Ionophores for Heavy Metal Sensors , 2008, Sensors.

[26]  R. Kelly,et al.  Occluded solution chemistry control and the role of alloy sulfur on the initiation of crevice corrosion in type 304ss , 1998 .

[27]  J. Safari,et al.  Coated-wire copper(II)-selective electrode based on phenylglyoxal-alpha-monoxime ionophore. , 2002, Analytical and bioanalytical chemistry.

[28]  S. Cadle,et al.  Rotating ring-disk study of the underpotential deposition of copper at platinum in 0.5M hydrochloric acid , 1971 .

[29]  H. Gasteiger,et al.  Copper electrodeposition on Pt(111) in the presence of chloride and (bi)sulfate: Rotating ring-Pt(111) disk electrode studies , 1995 .

[30]  S. Pourkamali,et al.  Detection of sub-ppm traces of aqueous heavy-metal ions using micro-electro-mechanical beam resonators , 2009 .

[31]  Dennis H. Evans,et al.  Analytical evaluation of differential pulse voltammetry at stationary electrodes using computer-based instrumentation , 1976 .

[32]  R. Koncki,et al.  POTENTIOMETRIC THICK-FILM GRAPHITE ELECTRODES WITH IMPROVED RESPONSE TO COPPER IONS , 2001 .

[33]  Daniel M. Hawkins,et al.  Voltammetric behaviour and trace determination of copper at a mercury-free screen-printed carbon electrode. , 2002, Talanta.

[34]  R. Evitts,et al.  A critical crevice solution and IR drop crevice corrosion model , 2008 .