Highly efficient dye-sensitized solar cells by TiCl4 surface modification of ZnO nano-flower thin film

[1]  Ujjwal Pal,et al.  Fabrication of hierarchical ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. , 2015, Physical chemistry chemical physics : PCCP.

[2]  Mingdeng Wei,et al.  Efficiency enhanced dye-sensitized Zn2SnO4 solar cells using a facile chemical-bath deposition method , 2014 .

[3]  M. Grätzel,et al.  Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. , 2014, ACS nano.

[4]  F. Salehi,et al.  Synthesis and characterization of ZnO nanowires grown on different seed layers: The application for dye-sensitized solar cells , 2013 .

[5]  Kai Jiang,et al.  Facile synthesis of TiO2 hierarchical microspheres assembled by ultrathin nanosheets for dye-sensitized solar cells , 2013 .

[6]  D. K. Aswal,et al.  XPS, UV–Vis, FTIR, and EXAFS Studies to Investigate the Binding Mechanism of N719 Dye onto Oxalic Acid Treated TiO2 and Its Implication on Photovoltaic Properties , 2013 .

[7]  F. Güell,et al.  Influence of the Annealing Atmosphere on the Performance of ZnO Nanowire Dye-Sensitized Solar Cells , 2013 .

[8]  Liyi Shi,et al.  A simple route for decorating TiO2 nanoparticle over ZnO aggregates dye-sensitized solar cell , 2013 .

[9]  Soon-Gil Yoon,et al.  Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition , 2013 .

[10]  T. Miyasaka,et al.  Efficiency Enhancement of ZnO-Based Dye-Sensitized Solar Cells by Low-Temperature TiCl4 Treatment and Dye Optimization , 2013 .

[11]  S. Sohn,et al.  Enhanced Performance of Dye-Sensitized Solar Cells with Surface-Modified ZnO Nanorods , 2013 .

[12]  Xinqi Chen,et al.  Ultralong porous ZnO nanobelt arrays grown directly on fluorine-doped SnO2 substrate for dye-sensitized solar cells , 2012 .

[13]  S. Shah,et al.  Photoelectrochemical degradation of azo dye over pulsed laser deposited nitrogen-doped TiO2 thin film , 2012 .

[14]  Mingdeng Wei,et al.  Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition , 2012 .

[15]  C. Park,et al.  Synthesis, characterization, and photocatalytic properties of ZnO nano-flower containing TiO2 NPs , 2012 .

[16]  G. Sberveglieri,et al.  Metal-free organic sensitizers with a sterically hindered thiophene unit for efficient dye-sensitized solar cells , 2011 .

[17]  Litao Sun,et al.  Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells , 2011 .

[18]  Guozhong Cao,et al.  Nanostructured photoelectrodes for dye-sensitized solar cells , 2011 .

[19]  K. Ho,et al.  Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells , 2010 .

[20]  Guo-cong Liu,et al.  A facile wet chemical route to prepare ZnO/TiO_2 nanotube composites and their photocatalytic activities , 2010 .

[21]  Dalin Sun,et al.  Metal-free indoline dye sensitized zinc oxide nanowires solar cell , 2010 .

[22]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[23]  F. Fabregat‐Santiago,et al.  Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements , 2009 .

[24]  Song-Yeu Tsai,et al.  Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications , 2008 .

[25]  Guozhong Cao,et al.  Polydisperse Aggregates of ZnO Nanocrystallites: A Method for Energy‐Conversion‐Efficiency Enhancement in Dye‐Sensitized Solar Cells , 2008 .

[26]  Nam-Gyu Park,et al.  Nano‐embossed Hollow Spherical TiO2 as Bifunctional Material for High‐Efficiency Dye‐Sensitized Solar Cells , 2008 .

[27]  Joseph T Hupp,et al.  ZnO nanotube based dye-sensitized solar cells. , 2007, Nano letters.

[28]  Guo-Qiang Lo,et al.  Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode , 2007 .

[29]  S. Chaudhuri,et al.  Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays. , 2006, The journal of physical chemistry. B.

[30]  Anders Hagfeldt,et al.  Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. , 2006, The journal of physical chemistry. B.

[31]  H. Smit,et al.  Influence of scattering layers on efficiency of dye-sensitized solar cells , 2006 .

[32]  Hidetoshi Miura,et al.  High‐Efficiency Organic‐Dye‐ Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness , 2006 .

[33]  Wei Chen,et al.  ZnO Nanosheets with Ordered Pore Periodicity via Colloidal Crystal Template Assisted Electrochemical Deposition , 2006 .

[34]  Michael Grätzel,et al.  Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[35]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[36]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[37]  T. Mallouk,et al.  Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. , 2005, The journal of physical chemistry. B.

[38]  Hironori Arakawa,et al.  Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell , 2004 .

[39]  E. Hosono,et al.  Synthesis, structure and photoelectrochemical performance of micro/nano-textured ZnO/eosin Y electrodes , 2004 .

[40]  Michael Grätzel,et al.  Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy , 2003 .

[41]  A. J. Frank,et al.  Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. , 2003, Journal of the American Chemical Society.

[42]  E. Wang,et al.  Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO2 electrodes , 2001 .

[43]  Adrian C. Fisher,et al.  Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2000 .

[44]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[45]  F. Willig,et al.  Influence of trap filling on photocurrent transients in polycrystalline TiO2 , 1991 .

[46]  Mingdeng Wei,et al.  Efficiency improvement of dye-sensitized BaSnO3 solar cell based surface treatments , 2018 .

[47]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[48]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[49]  J. Sullivan,et al.  A comparison of ion and fast atom beam reduction in TiO2 , 1988 .