Dynamics of a new Lorenz-like chaotic system

Abstract The present work is devoted to giving new insights into a new Lorenz-like chaotic system. The local dynamical entities, such as the number of equilibria, the stability of the hyperbolic equilibria and the stability of the non-hyperbolic equilibrium obtained by using the center manifold theorem, the pitchfork bifurcation and the degenerate pitchfork bifurcation, Hopf bifurcations and the local manifold character, are all analyzed when the parameters are varied in the space of parameters. The existence of homoclinic and heteroclinic orbits of the system is also rigorously studied. More exactly, for b ≥ 2 a > 0 and c > 0 , we prove that the system has no homoclinic orbit but has two and only two heteroclinic orbits.

[1]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[2]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[3]  Yongguang Yu,et al.  Hopf bifurcation analysis of the Lü system , 2004 .

[4]  Guanrong Chen,et al.  A Note on Hopf bifurcation in Chen's System , 2003, Int. J. Bifurc. Chaos.

[5]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[6]  Leon O. Chua,et al.  Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..

[7]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[8]  Gheorghe Tigan,et al.  Heteroclinic orbits in the T and the Lü systems , 2009 .

[9]  Luis Fernando Mello,et al.  Inductorless Chua's Circuit: Experimental Time Series Analysis , 2007 .

[10]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[11]  O. Rössler An equation for continuous chaos , 1976 .

[12]  Guanrong Chen,et al.  Local bifurcations of the Chen System , 2002, Int. J. Bifurc. Chaos.

[13]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[15]  Guanrong Chen,et al.  A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.

[16]  Marcelo Messias,et al.  Bifurcation analysis of a new Lorenz-like chaotic system , 2008 .

[17]  Kuifei Huang,et al.  Stability and Hopf bifurcation analysis of a new system , 2009 .

[18]  Guanrong Chen,et al.  Complex Dynamical Behaviors of the Chaotic Chen's System , 2003, Int. J. Bifurc. Chaos.

[19]  Gonzalo Alvarez,et al.  Breaking projective chaos synchronization secure communication using filtering and generalized synchronization , 2004, Chaos, Solitons & Fractals.

[20]  Leo R. M. Maas,et al.  The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .

[21]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[22]  Guanrong Chen,et al.  On homoclinic and heteroclinic orbits of Chen's System , 2006, Int. J. Bifurc. Chaos.

[23]  Guanrong Chen,et al.  On stability and bifurcation of Chen’s system , 2004 .

[24]  Qigui Yang,et al.  A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.

[25]  Yongguang Yu,et al.  Hopf bifurcation in the Lü system , 2003 .

[26]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[27]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.