BELL'S INEQUALITIES DETECT EFFICIENT ENTANGLEMENT
暂无分享,去创建一个
[1] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[2] J. Uffink. Quadratic bell inequalities as tests for multipartite entanglement. , 2002, Physical review letters.
[3] Imre Csiszár,et al. Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.
[4] Robert B. Griffiths,et al. Two qubit copying machine for economical quantum eavesdropping , 1999 .
[5] P. Grangier,et al. Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .
[6] N. Gisin,et al. OPTIMAL EAVESDROPPING IN QUANTUM CRYPTOGRAPHY. I. INFORMATION BOUND AND OPTIMAL STRATEGY , 1997 .
[7] Hoi-Kwong Lo,et al. Introduction to Quantum Computation Information , 2002 .
[8] L. Ballentine,et al. Quantum Theory: Concepts and Methods , 1994 .
[9] N. Mermin. Quantum theory: Concepts and methods , 1997 .
[10] Asher Peres,et al. Quantum Theory: Concepts and Methods , 1994 .
[11] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[12] Ekert,et al. Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.
[13] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.
[14] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .
[15] Nicolas Gisin,et al. Security bounds in quantum cryptography using d-level systems , 2003, Quantum Inf. Comput..
[16] M. Horodecki,et al. Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .