Active Galactic Nucleus Properties of ∼1 Million Member Galaxies of Galaxy Groups and Clusters at z < 1.4 Based on the Subaru Hyper Suprime-Cam Survey

Herein, we present the statistical properties of active galactic nuclei (AGNs) for approximately 1 million member galaxies of galaxy groups and clusters with 0.1 < cluster redshift (z cl) < 1.4 selected using the Subaru Hyper Suprime-Cam, the so-called CAMIRA clusters. In this research, we focused on the AGN power fraction (f AGN), which is defined as the proportion of the contribution of AGNs to the total infrared (IR) luminosity, L IR (AGN)/L IR, and examined how f AGN depends on (i) z cl and (ii) the distance from the cluster center. We compiled multiwavelength data using the ultraviolet–mid-IR range. Moreover, we performed spectral energy distribution fits to determine f AGN using the CIGALE code with the SKIRTOR AGN model. We found that (i) the value of f AGN in the CAMIRA clusters is positively correlated with z cl, with the correlation slope being steeper than that for field galaxies, and (ii) f AGN exhibits a high value at the cluster outskirts. These results indicate that the emergence of the AGN population depends on the redshift and environment and that galaxy groups and clusters at high redshifts are important in AGN evolution. Additionally, we demonstrated that cluster–cluster mergers may enhance AGN activity at the outskirts of particularly massive galaxy clusters. Our findings are consistent with a related study on the CAMIRA clusters that was based on the AGN number fraction.

[1]  M. Oguri,et al.  ALMA Lensing Cluster Survey: Full Spectral Energy Distribution Analysis of z ∼ 0.5–6 Lensed Galaxies Detected with millimeter Observations , 2024, The Astrophysical Journal.

[2]  K. Setoguchi,et al.  Multiwavelength Spectral Energy Distribution Analysis of X-Ray Selected Active Galactic Nuclei at z = 0.2–0.8 in the Stripe 82 Region , 2024, Astrophysical Journal.

[3]  E. Koulouridis,et al.  AGNs in massive galaxy clusters: Role of galaxy merging, infalling groups, cluster mass, and dynamical state , 2024, Astronomy &amp; Astrophysics.

[4]  M. Oguri,et al.  AGN number fraction in galaxy groups and clusters at z<1.4 from the Subaru Hyper Suprime-Cam survey , 2023, 2309.01926.

[5]  C. Benoist,et al.  The XXL Survey. L. Active galactic nucleus contamination in galaxy clusters: Detection and cosmological impact , 2023, Astronomy &amp; Astrophysics.

[6]  K. Kohno,et al.  ALMA Lensing Cluster Survey: Properties of Millimeter Galaxies Hosting X-Ray-detected Active Galactic Nuclei , 2023, The Astrophysical Journal.

[7]  A. Tanimoto,et al.  Hard X-Ray to Radio Multiwavelength SED Analysis of Local U/LIRGs in the GOALS Sample with a Self-consistent AGN Model including a Polar-dust Component , 2023, The Astrophysical Journal Supplement Series.

[8]  A. Georgakakis,et al.  Cosmic evolution of the incidence of Active Galactic Nuclei in massive clusters: Simulations versus observations , 2022, 2211.00032.

[9]  K. Shimasaku,et al.  Detection of anisotropic satellite quenching in galaxy clusters up to z ∼ 1 , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  L. V. Tóth,et al.  The statistical properties of 28 IR-bright dust-obscured galaxies and SED modelling using CIGALE , 2022, Publications of the Astronomical Society of Japan.

[11]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[12]  S. Paltani,et al.  XXL-HSC: Link between AGN activity and star formation in the early Universe (z > 3.5) , 2022, Astronomy &amp; Astrophysics.

[13]  M. Klein,et al.  The eROSITA Final Equatorial Survey (eFEDS). X-ray properties of Subaru's optically selected clusters , 2022, Astronomy &amp; Astrophysics.

[14]  W. Brandt,et al.  Fitting AGN/Galaxy X-Ray-to-radio SEDs with CIGALE and Improvement of the Code , 2022, The Astrophysical Journal.

[15]  M. Radovich,et al.  Exploring the AGN–Ram Pressure Stripping Connection in Local Clusters , 2021, The Astrophysical Journal.

[16]  Austria,et al.  Star-formation quenching of cluster galaxies as traced by metallicity and presence of active galactic nuclei, and galactic conformity , 2021, Astronomy & Astrophysics.

[17]  R. Lupton,et al.  Third Data Release of the Hyper Suprime-Cam Subaru Strategic Program , 2021, 2108.13045.

[18]  M. Boquien,et al.  Fitting spectral energy distributions of FMOS-COSMOS emission-line galaxies at z~1.6: Star formation rates, dust attenuation, and [OIII] lambda5007 emission-line luminosities , 2021, Astronomy & Astrophysics.

[19]  M. Malkan,et al.  Environmental effects on AGN activity via extinction-free mid-infrared census , 2021, Monthly Notices of the Royal Astronomical Society.

[20]  A. Merloni,et al.  The eROSITA Final Equatorial-Depth Survey (eFEDS). A multiwavelength view of WISE mid-infrared galaxies/active galactic nuclei , 2021, Astronomy & Astrophysics.

[21]  Jeff Reback,et al.  pandas-dev/pandas: Pandas 1.2.4 , 2021 .

[22]  A. Merloni,et al.  The eROSITA Final Equatorial-Depth Survey (eFEDS) , 2021, Astronomy & Astrophysics.

[23]  D. Sobral,et al.  ENISALA. II. Distinct Star Formation and Active Galactic Nucleus Activity in Merging and Relaxed Galaxy Clusters , 2021, The Astrophysical Journal.

[24]  T. Nagao,et al.  How Does the Polar Dust Affect the Correlation between Dust Covering Factor and Eddington Ratio in Type 1 Quasars Selected from the Sloan Digital Sky Survey Data Release 16? , 2021, The Astrophysical Journal.

[25]  M. Akiyama,et al.  Black Hole and Galaxy Coevolution in Moderately Luminous Active Galactic Nuclei at z ∼ 1.4 in SXDF , 2021, The Astrophysical Journal.

[26]  J. Silverman,et al.  Galaxy Mergers up to z < 2.5. II. AGN Incidence in Merging Galaxies at Separations of 3–15 kpc , 2021, 2101.05000.

[27]  H. Matsuhara,et al.  Subaru/HSC deep optical imaging of infrared sources in the AKARI North Ecliptic Pole-Wide field , 2020 .

[28]  M. Boquien,et al.  X-ray flux in SED modelling: An application of X-CIGALE in the XMM-XXL field , 2020, 2011.09220.

[29]  H. Miraghaei The Effect of Environment on AGN Activity: The Properties of Radio and Optical AGN in Void, Isolated, and Group Galaxies , 2020, The Astronomical Journal.

[30]  W. Brandt,et al.  The environmental dependence of X-ray AGN activity at z ∼ 0.4 , 2020, 2010.04832.

[31]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[32]  H. Matsuhara,et al.  Search for Optically Dark Infrared Galaxies without Counterparts of Subaru Hyper Suprime-Cam in the AKARI North Ecliptic Pole Wide Survey Field , 2020, The Astrophysical Journal.

[33]  A. Bonanos,et al.  An obscured AGN population hidden in the VIPERS galaxies: identification through spectral energy distribution decomposition , 2020, 2005.02361.

[34]  W. Brandt,et al.  x-cigale: fitting AGN/galaxy SEDs from X-ray to infrared , 2020, Monthly Notices of the Royal Astronomical Society.

[35]  A. Babul,et al.  Fountains and storms: The role of AGN and mergers in disrupting the cool-core in the RomulusC simulation , 2020, 2001.06532.

[36]  X. Dai,et al.  Lower AGN Abundance in Galaxy Clusters at z < 0.5 , 2019, The Astronomical Journal.

[37]  T. Nagao,et al.  SOFIA/HAWC+ View of an Extremely Luminous Infrared Galaxy: WISE 1013+6112 , 2019, The Astrophysical Journal.

[38]  T. Nagao,et al.  NuSTAR Discovery of a Compton-thick, Dust-obscured Galaxy: WISE J0825+3002 , 2019, The Astrophysical Journal.

[39]  E. Medezinski,et al.  The richness-to-mass relation of CAMIRA galaxy clusters from weak-lensing magnification in the Subaru Hyper Suprime-Cam survey , 2019, Monthly Notices of the Royal Astronomical Society.

[40]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[41]  Yen-Ting Lin,et al.  Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.

[42]  Masayuki Tanaka,et al.  A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). II. Physical Properties Derived from the SED Fitting with Optical, Infrared, and Radio Data , 2019, The Astrophysical Journal Supplement Series.

[43]  Takahiro Nishimichi,et al.  The mass–richness relation of optically selected clusters from weak gravitational lensing and abundance with Subaru HSC first-year data , 2019, Publications of the Astronomical Society of Japan.

[44]  E. Koulouridis,et al.  High density of active galactic nuclei in the outskirts of distant galaxy clusters , 2019, Astronomy & Astrophysics.

[45]  Technology of China,et al.  Effect of richness on AGN and star formation activities in SDSS galaxy groups , 2019, Monthly Notices of the Royal Astronomical Society.

[46]  E. Schlafly,et al.  The unWISE Catalog: Two Billion Infrared Sources from Five Years of WISE Imaging , 2019, The Astrophysical Journal Supplement Series.

[47]  T. Nagao,et al.  Does the mid-infrared–hard X-ray luminosity relation for active galactic nuclei depend on Eddington ratio? , 2018, Monthly Notices of the Royal Astronomical Society.

[48]  E. Medezinski,et al.  Halo concentration, galaxy red fraction, and gas properties of optically defined merging clusters† , 2018, Publications of the Astronomical Society of Japan.

[49]  Benjamin Rose,et al.  The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library , 2018, The Astrophysical Journal Supplement Series.

[50]  C. Adami,et al.  The XXL Survey , 2018, Astronomy & Astrophysics.

[51]  D. Corre,et al.  CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.

[52]  Yutaka Komiyama,et al.  Hyper Suprime-Cam: Filters , 2018, Publications of the Astronomical Society of Japan.

[53]  M. Magliocchetti,et al.  The environmental properties of radio-emitting AGN , 2018, 1805.06233.

[54]  L. Wang,et al.  Main sequence of star forming galaxies beyond the Herschel confusion limit , 2018, Astronomy & Astrophysics.

[55]  S. Bamford,et al.  Galaxy And Mass Assembly: The G02 field, Herschel-ATLAS target selection and data release 3 , 2018 .

[56]  Anna K. Weigel,et al.  The fraction of AGNs in major merger galaxies and its luminosity dependence , 2018, 1802.04277.

[57]  Tucson,et al.  The AGN luminosity fraction in merging galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[58]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[59]  Marco Riello,et al.  The VISTA ZYJHKs photometric system: Calibration from 2MASS , 2017, 1711.08805.

[60]  T. Nagao,et al.  Ionized Gas Outflows in Infrared-bright Dust-obscured Galaxies Selected with WISE and SDSS , 2017, 1710.02525.

[61]  D. Croton,et al.  Triggering active galactic nuclei in galaxy clusters , 2017, 1708.05519.

[62]  L. Silva,et al.  Characterizing the UV-to-NIR shape of the dust attenuation curve of IR luminous galaxies up to z ∼ 2 , 2017, 1707.09805.

[63]  R. Cutri,et al.  The WISE AGN Catalog , 2017, 1706.09901.

[64]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[65]  Satoshi Miyazaki,et al.  Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline , 2017, 1705.01599.

[66]  Satoshi Miyazaki,et al.  The bright-star masks for the HSC-SSP survey , 2017, 1705.00622.

[67]  Satoshi Miyazaki,et al.  Photometric Redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1 , 2017, 1704.05988.

[68]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[69]  Luciana Bianchi,et al.  Revised Catalog of GALEX Ultraviolet Sources. I. The All-Sky Survey: GUVcat_AIS , 2017, 1704.05903.

[70]  T. Nagao,et al.  Far-infrared Properties of Infrared-bright Dust-obscured Galaxies Selected with IRAS and AKARI Far-infrared All-sky Survey , 2017, 1704.03655.

[71]  N. R. Napolitano,et al.  The third data release of the Kilo-Degree Survey and associated data products , 2017, 1703.02991.

[72]  Satoshi Miyazaki,et al.  An optically-selected cluster catalog at redshift 0.1 , 2017, 1701.00818.

[73]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2) , 2016, 1611.07048.

[74]  G. Gavazzi,et al.  Quenching of the star formation activity in cluster galaxies , 2016, 1609.00545.

[75]  D. Gerdes,et al.  The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey , 2016, 1606.06775.

[76]  E. Pellegrini,et al.  Towards universal hybrid star formation rate estimators , 2016, 1603.09340.

[77]  P. Lira,et al.  The dust covering factor in active galactic nuclei , 2016, 1602.06954.

[78]  D. Elbaz,et al.  The imprint of rapid star formation quenching on the spectral energy distributions of galaxies , 2015, 1510.07657.

[79]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[80]  Philip J. Tait,et al.  Hyper-luminous dust-obscured galaxies discovered by the Hyper Suprime-Cam on Subaru and WISE , 2015, 1506.00320.

[81]  T. Bitsakis,et al.  Studying the evolution of galaxies in compact groups over the past 3 Gyr – I. Nuclear activity , 2015, 1504.01398.

[82]  S. Serjeant,et al.  Dust attenuation up to z ≃ 2 in the AKARI North Ecliptic Pole Deep Field , 2015, 1504.00248.

[83]  H. Rottgering,et al.  MC2: boosted AGN and star formation activity in CIZA J2242.8+5301, a massive post-merger cluster at z = 0.19 , 2015, 1503.02076.

[84]  D. Elbaz,et al.  Constraining the properties of AGN host galaxies with spectral energy distribution modelling , 2015, 1501.03672.

[85]  H. Hoekstra,et al.  The rise and fall of star formation in z ~ 0.2 merging galaxy clusters , 2014, 1410.2891.

[86]  Maarten Baes,et al.  SKIRT: An advanced dust radiative transfer code with a user-friendly architecture , 2014, Astron. Comput..

[87]  D. Elbaz,et al.  The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day , 2014, 1409.5433.

[88]  M. Oguri A cluster finding algorithm based on the multiband identification of red sequence galaxies , 2014, 1407.4693.

[89]  D. Lang unWISE: UNBLURRED COADDS OF THE WISE IMAGING , 2014, 1405.0308.

[90]  W. Brandt,et al.  A CHANDRA–SWIFT VIEW OF POINT SOURCES IN HICKSON COMPACT GROUPS: HIGH AGN FRACTION BUT A DEARTH OF STRONG AGNs , 2014, 1403.3856.

[91]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[92]  S.Ehlert,et al.  X-ray bright active galactic nuclei in massive galaxy clusters - II. The fraction of galaxies hosting active nuclei , 2013, 1310.5711.

[93]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[94]  A. Mazure,et al.  The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.

[95]  P. A. Price,et al.  THE PAN-STARRS 1 PHOTOMETRIC REFERENCE LADDER, RELEASE 12.01 , 2013, 1303.3634.

[96]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.

[97]  A. Fontana,et al.  The evolution of the AGN content in groups up to z ~ 1 , 2013, 1302.2861.

[98]  D. Elbaz,et al.  GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies , 2012, 1207.3528.

[99]  C. Casey Far-infrared spectral energy distribution fitting for galaxies near and far , 2012, 1206.1595.

[100]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[101]  Judith G. Cohen,et al.  Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.

[102]  A. C. Fabian,et al.  Observational Evidence of AGN Feedback , 2012, 1204.4114.

[103]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[104]  Puragra Guhathakurta,et al.  The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.

[105]  M. Baes,et al.  EFFICIENT THREE-DIMENSIONAL NLTE DUST RADIATIVE TRANSFER WITH SKIRT , 2011, 1108.5056.

[106]  A. Inoue Rest-frame ultraviolet-to-optical spectral characteristics of extremely metal-poor and metal-free galaxies , 2011, 1102.5150.

[107]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[108]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[109]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[110]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[111]  A. McConnachie,et al.  GALAXY PAIRS IN THE SLOAN DIGITAL SKY SURVEY. I. STAR FORMATION, ACTIVE GALACTIC NUCLEUS FRACTION, AND THE LUMINOSITY/MASS–METALLICITY RELATION , 2008, 0803.0161.

[112]  D. Kelson,et al.  First Measurement of a Rapid Increase in the AGN Fraction in High-Redshift Clusters of Galaxies , 2007, 0706.0209.

[113]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[114]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[115]  A. Biviano,et al.  The AGN fraction-velocity dispersion relation in clusters of galaxies , 2006, astro-ph/0610738.

[116]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[117]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[118]  Cambridge,et al.  The UKIRT Infrared Deep Sky Survey ZY JHK photometric system: passbands and synthetic colours , 2006, astro-ph/0601592.

[119]  Ž. Ivezić,et al.  The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback , 2005, astro-ph/0506269.

[120]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[121]  H. Lin,et al.  A Photometric Redshift Galaxy Catalog from the Red-Sequence Cluster Survey , 2005, astro-ph/0502157.

[122]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[123]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[124]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[125]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[126]  J. Kneib,et al.  A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+16 at z = 0.4. I. Morphological Distributions to 5 Mpc Radius , 2003, astro-ph/0303267.

[127]  F. Owen,et al.  Abell 2255: Increased Star Formation and AGN Activity in a Cluster-Cluster Merger , 2003, astro-ph/0302061.

[128]  C. Leitherer,et al.  Global Far-Ultraviolet (912-1800 Å) Properties of Star-forming Galaxies , 2002 .

[129]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[130]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[131]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[132]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[133]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[134]  A. Oemler,et al.  The Evolution of galaxies in clusters. 5. A Study of populations since Z approximately equal to 0.5 , 1984 .

[135]  Yukiko Kamata,et al.  Hyper Suprime-Cam: System design and verification of image quality , 2018 .

[136]  Yukiko Kamata,et al.  Hyper Suprime-Cam: Camera dewar design , 2018 .

[137]  Satoshi Miyazaki,et al.  The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH , 2018 .

[138]  Sinclair. Smith The Mass of the Virgo Cluster , 1936 .

[139]  Pablo Vera Alfaro,et al.  THE SEVENTEENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEYS: COMPLETE RELEASE OF MANGA, MASTAR AND APOGEE-2 DATA , 2022 .