Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules

[1]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[2]  Michael P. Sheetz,et al.  A model for kinesin movement from nanometer-level movements of kinesin and cytoplasmic dynein and force measurements , 1991, Journal of Cell Science.

[3]  H. Erickson,et al.  Kinetics of protein-protein association explained by Brownian dynamics computer simulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  P. Meluh,et al.  Kinesin-related proteins required for assembly of the mitotic spindle , 1992, The Journal of cell biology.

[5]  M. Hoyt,et al.  Kinesin-related proteins required for structural integrity of the mitotic spindle , 1992, Cell.

[6]  K. Loo,et al.  Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly , 1992, The Journal of cell biology.

[7]  AC Tose Cell , 1993, Cell.

[8]  J. Howard,et al.  Kinesin swivels to permit microtubule movement in any direction. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D N Mastronarde,et al.  Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle , 1995, The Journal of cell biology.

[10]  S Inoué,et al.  1. EARLY HISTORY: THE DYNAMIC EQUILIBRIUM MODEL , 1995 .

[11]  R. Baskin,et al.  A bipolar kinesin , 1996, Nature.

[12]  M. Hoyt,et al.  Mitotic Spindle Positioning in Saccharomyces cerevisiae Is Accomplished by Antagonistically Acting Microtubule Motor Proteins , 1997, The Journal of cell biology.

[13]  M. Hoyt,et al.  Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. , 1997, Molecular biology of the cell.

[14]  Nicklas Rb How Cells Get the Right Chromosomes , 1997, Science.

[15]  R. Nicklas How Cells Get the Right Chromosomes , 1997, Science.

[16]  D. Odde,et al.  COMPUTER-ASSISTED MOTION ANALYSIS OF FLUORESCENT TUBULIN DYNAMICS IN THE NERVE GROWTH CONE , 1997 .

[17]  N. Cole,et al.  Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. , 1997, Molecular biology of the cell.

[18]  S. Shaw,et al.  Astral Microtubule Dynamics in Yeast: A Microtubule-based Searching Mechanism for Spindle Orientation and Nuclear Migration into the Bud , 1997, The Journal of cell biology.

[19]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[20]  Tim Stearns,et al.  Microtubules Orient the Mitotic Spindle in Yeast through Dynein-dependent Interactions with the Cell Cortex , 1997, The Journal of cell biology.

[21]  Jonathon Howard,et al.  Processivity of the Motor Protein Kinesin Requires Two Heads , 1998, The Journal of cell biology.

[22]  A. Murray,et al.  Time-Lapse Microscopy Reveals Unique Roles for Kinesins during Anaphase in Budding Yeast , 1998, The Journal of cell biology.

[23]  L. Frisén,et al.  The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. , 1998, Molecular biology of the cell.

[24]  D. Roof,et al.  The Kinesin-related Protein Kip1p of Saccharomyces cerevisiae Is Bipolar* , 1999, The Journal of Biological Chemistry.

[25]  S. Shaw,et al.  Using green fluorescent protein fusion proteins to quantitate microtubule and spindle dynamics in budding yeast. , 1999, Methods in cell biology.

[26]  S. Kuo,et al.  Motile Properties of the Kinesin-related Cin8p Spindle Motor Extracted from Saccharomyces cerevisiae Cells* , 1999, The Journal of Biological Chemistry.

[27]  E. Salmon,et al.  The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae , 1999, Nature Cell Biology.

[28]  J. McIntosh,et al.  High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. , 1999, Molecular biology of the cell.

[29]  G. Goshima,et al.  Establishing Biorientation Occurs with Precocious Separation of the Sister Kinetochores, but Not the Arms, in the Early Spindle of Budding Yeast , 2000, Cell.

[30]  R. Nicklas,et al.  Tension on chromosomes increases the number of kinetochore microtubules but only within limits. , 2000, Journal of cell science.

[31]  M. Hoyt,et al.  Mitotic motors in Saccharomyces cerevisiae. , 2000, Biochimica et biophysica acta.

[32]  Peter K. Sorger,et al.  Transient Sister Chromatid Separation and Elastic Deformation of Chromosomes during Mitosis in Budding Yeast , 2000, Cell.

[33]  Kerry Bloom,et al.  Budding Yeast Chromosome Structure and Dynamics during Mitosis , 2001, The Journal of cell biology.

[34]  M. Hoyt,et al.  Cell cycle-dependent degradation of the Saccharomyces cerevisiae spindle motor Cin8p requires APC(Cdh1) and a bipartite destruction sequence. , 2001, Molecular biology of the cell.

[35]  S. Ishiwata,et al.  Nucleotide-dependent single- to double-headed binding of kinesin. , 2001, Science.

[36]  G. Goshima,et al.  Time course analysis of precocious separation of sister centromeres in budding yeast: continuously separated or frequently reassociated? , 2001, Genes to cells : devoted to molecular & cellular mechanisms.

[37]  Claudia J. Bode,et al.  beta-Tubulin C354 mutations that severely decrease microtubule dynamics do not prevent nuclear migration in yeast. , 2002, Molecular biology of the cell.

[38]  David N Mastronarde,et al.  Electron tomography of yeast cells. , 2002, Methods in enzymology.

[39]  E. Salmon,et al.  Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics. , 2003, Molecular biology of the cell.

[40]  David J Odde,et al.  Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. , 2003, Biophysical journal.

[41]  P. Selvin Lighting up single ion channels. , 2003, Biophysical journal.

[42]  E. Salmon,et al.  Stable Kinetochore-Microtubule Attachment Constrains Centromere Positioning in Metaphase , 2004, Current Biology.

[43]  Kerry Bloom,et al.  Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. , 2005, Molecular biology of the cell.

[44]  E. Peterman,et al.  The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks , 2005, Nature.

[45]  A. Prescott,et al.  Molecular mechanisms of kinetochore capture by spindle microtubules , 2005, Nature.

[46]  Henning Stahlberg,et al.  A Homotetrameric Kinesin-5, KLP61F, Bundles Microtubules and Antagonizes Ncd in Motility Assays , 2006, Current Biology.

[47]  Acknowledgments , 2006, Molecular and Cellular Endocrinology.

[48]  Polly M. Fordyce,et al.  Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro , 2006, Nature Cell Biology.

[49]  Peter K. Sorger,et al.  Analysis of kinesin motor function at budding yeast kinetochores , 2006, The Journal of cell biology.

[50]  E. Salmon,et al.  Measuring nanometer scale gradients in spindle microtubule dynamics using model convolution microscopy. , 2006, Molecular biology of the cell.

[51]  E. Salmon,et al.  Molecular architecture of a kinetochore–microtubule attachment site , 2006, Nature Cell Biology.

[52]  T. Huffaker,et al.  Dynamic microtubules are essential for efficient chromosome capture and biorientation in S. cerevisiae , 2006, The Journal of cell biology.

[53]  Mohan L Gupta,et al.  Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle , 2006, Nature Cell Biology.

[54]  Peter Michaely,et al.  Nanospring behaviour of ankyrin repeats , 2006, Nature.

[55]  J. Yates,et al.  Mps1 Phosphorylation of Dam1 Couples Kinetochores to Microtubule Plus Ends at Metaphase , 2006, Current Biology.

[56]  Anthony A. Hyman,et al.  Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner , 2006, Nature Cell Biology.

[57]  David C. Bouck,et al.  Pericentric Chromatin Is an Elastic Component of the Mitotic Spindle , 2007, Current Biology.

[58]  Kerry Bloom,et al.  Hypothesis testing via integrated computer modeling and digital fluorescence microscopy. , 2007, Methods.

[59]  Tamir Gonen,et al.  Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis , 2007, Nature Cell Biology.

[60]  David A Calderwood,et al.  Forces and Bond Dynamics in Cell Adhesion , 2007, Science.

[61]  Stefan Hümmer,et al.  The Human Kinesin Kif18A Is a Motile Microtubule Depolymerase Essential for Chromosome Congression , 2007, Current Biology.

[62]  A. Hyman,et al.  Microtubule polymerases and depolymerases. , 2007, Current opinion in cell biology.

[63]  C. Schmidt,et al.  Load-dependent release limits the processive stepping of the tetrameric Eg5 motor , 2007, European Biophysics Journal.

[64]  O. Cohen-Fix,et al.  The Spindle Midzone Microtubule-Associated Proteins Ase1p and Cin8p Affect the Number and Orientation of Astral Microtubules in Saccharomyces cerevisiae , 2007, Cell cycle.

[65]  K. Bloom,et al.  Kinesin-8 molecular motors: putting the brakes on chromosome oscillations. , 2008, Trends in cell biology.

[66]  E. Salmon,et al.  The microtubule-based motor Kar3 and plus end–binding protein Bim1 provide structural support for the anaphase spindle , 2008, The Journal of cell biology.

[67]  Linda Wordeman,et al.  The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. , 2008, Developmental cell.