Concurrent activation of a novel putative transforming gene, myeov, and cyclin D1 in a subset of multiple myeloma cell lines with t(11;14)(q13;q32).

Through the application of the NIH/3T3 tumorigenicity assay to DNA from a gastric carcinoma, we have identified a novel transforming gene, designated myeov (myeloma overexpressed gene in a subset of t[11;14]-positive multiple myelomas). Sequence analyses did not reveal any homology with sequences present in the GenBank, except the deduced protein structure predicts a transmembrane localization. Myeov was mapped to chromosome 11q13 and localized by DNA fiber fluorescence in situ hybridization (FISH) 360-kilobase (kb) centromeric of cyclin D1. In 3 of 7 multiple myeloma (MM) cell lines with a t(11;14)(q13;q32) and cyclin-D1 overexpression, Northern blot analysis revealed overexpression of myeov as well. In all 7 cell lines, the translocation breakpoint was mapped within the 360-kb region between myeov and cyclin D1. DNA fiber FISH with a contig of probes covering the constant region of the immunoglobulin heavy chain (IgH) revealed that exclusively in the 3 myeov-overexpressing cell lines (KMS-12, KMS-21, and XG-5), either the 5' E(mu) enhancer or the most telomeric 3' Ealpha enhancer was juxtaposed to myeov. Although cyclin D1 overexpression represents a characteristic feature of all MM cell lines with t(11;14), our results demonstrate aberrant expression of a second putative oncogene in a subset of these cases, due to juxtaposition to IgH enhancers. The clinical relevance of this dual activation remains to be elucidated. (Blood. 2000;95:2691-2698)

[1]  J. Mary,et al.  Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. , 1995, Blood.

[2]  M. Kozak Initiation of translation in prokaryotes and eukaryotes. , 1999, Gene.

[3]  B. Barlogie,et al.  Cytogenetic findings in 200 patients with multiple myeloma. , 1995, Cancer genetics and cytogenetics.

[4]  M. Rocchi,et al.  A novel chromosomal translocation t(4; 14)(p16.3; q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene. , 1997, Blood.

[5]  D. Gerhard,et al.  Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. , 1996, Blood.

[6]  M. Rocchi,et al.  Molecular analysis of 11q13 breakpoints in multiple myeloma. , 1999, Blood.

[7]  E. Schuuring,et al.  Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. , 1992, Oncogene.

[8]  D. Birnbaum,et al.  Detailed map of a region commonly amplified at 11q13-->q14 in human breast carcinoma. , 1997, Cytogenetics and cell genetics.

[9]  B. Klein,et al.  Expanded range of 11q13 breakpoints with differing patterns of cyclin D1 expression in B‐cell malignancies , 1993, Genes, chromosomes & cancer.

[10]  P. L. Bergsagel,et al.  Insertion of excised IgH switch sequences causes overexpression of cyclin D1 in a myeloma tumor cell. , 1999, Molecular cell.

[11]  M. Taniwaki,et al.  Nonrandom chromosomal rearrangements of 14q32.3 and 19p13.3 and preferential deletion of 1p in 21 patients with multiple myeloma and plasma cell leukemia. , 1994, Blood.

[12]  E. Schuuring,et al.  The t(11;14) (q13;q32) in multiple myeloma cell line KMS12 has its 11q13 breakpoint 330 kb centromeric from the cyclin D1 gene. , 1997, Blood.

[13]  F. Mills,et al.  Enhancer Complexes Located Downstream of Both Human Immunoglobulin Cα Genes , 1997, The Journal of experimental medicine.

[14]  R. Fonseca,et al.  Multiple myeloma and the translocation t(11;14)(q13;q32): a report on 13 cases , 1998, British journal of haematology.

[15]  B. Barlogie,et al.  Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. , 1995, Blood.

[16]  E. van den Berg,et al.  Fine mapping of the human renal oncocytoma-associated translocation (5;11)(q35;q13) breakpoint. , 1997, Cancer genetics and cytogenetics.

[17]  C. Bartram,et al.  Spectrum of transforming sequences detected by tumorigenicity assay in a large series of human neoplasms , 1999, International journal of cancer.

[18]  E. Schuuring,et al.  Cyclin D1 protein analysis in the diagnosis of mantle cell lymphoma. , 1995, Blood.

[19]  E. Schuuring,et al.  Direct visualization of dispersed 11q13 chromosomal translocations in mantle cell lymphoma by multicolor DNA fiber fluorescence in situ hybridization. , 1996, Blood.

[20]  E. Schuuring,et al.  Chromosomal markers in lymphoma diagnosis , 1996 .

[21]  E. Schuuring,et al.  Visualization of mono-allelic chromosomal aberrations 3′ and 5′ of the cyclin D1 gene in mantle cell lymphoma using DNA fiber fluorescence in situ hybridization , 1997, Oncogene.

[22]  M. Potter,et al.  Differences between Burkitt's lymphomas and mouse plasmacytomas in the immunoglobulin heavy chain/c-myc recombinations that occur in their chromosomal translocations. , 1995, Cancer research.

[23]  C. Bastard,et al.  Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases , 1998, Leukemia.

[24]  M. Dyer,et al.  DNA fiber fluorescence in situ hybridization analysis of immunoglobulin class switching in B-cell neoplasia: aberrant CH gene rearrangements in follicle center-cell lymphoma. , 1998, Blood.

[25]  E. Schuuring,et al.  Multiple breakpoints within the BCL-1 locus in B-cell lymphoma: rearrangements of the cyclin D1 gene. , 1993, Cancer research.

[26]  B. Czepulkowski,et al.  Human cytogenetics : a practical approach , 1986 .

[27]  J W Gray,et al.  Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Schuuring,et al.  Cyclin D1 messenger RNA overexpression as a marker for mantle cell lymphoma. , 1995, Oncogene.

[29]  I. Magrath,et al.  Localization of breakpoints by polymerase chain reactions in Burkitt's lymphoma with 8;14 translocations. , 1990, Blood.

[30]  W. Schaffner,et al.  Enhancer sequences and the regulation of gene transcription. , 1988, European journal of biochemistry.

[31]  A. Moorman,et al.  WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. , 1998, Human molecular genetics.

[32]  P. Lichter,et al.  Chromosome analysis by non-isotopic in situ hybridization. , 1992 .

[33]  T. Rabbitts,et al.  Chromosomal translocations in human cancer , 1994, Nature.

[34]  B. Birshtein,et al.  Virtually identical enhancers containing a segment of homology to murine 3'IgH-E(hs1,2) lie downstream of human Ig C alpha 1 and C alpha 2 genes. , 1997, Journal of immunology.

[35]  E. Schuuring The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes--a review. , 1995, Gene.

[36]  P. L. Bergsagel,et al.  The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. , 1998, Blood.

[37]  P. Evans,et al.  The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA. , 1995, Trends in biochemical sciences.

[38]  E. Schuuring,et al.  Linkage map of a region of human chromosome band 11q13 amplified in breast and squamous cell tumors , 1992, Genes, chromosomes & cancer.

[39]  R. Kyle,et al.  The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. , 1985, Blood.

[40]  E. Schröck,et al.  Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. , 1998, Blood.

[41]  B. Klein,et al.  Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma , 1997, Nature Genetics.

[42]  G. von Heijne,et al.  A 12-Residue-long Polyleucine Tail Is Sufficient to Anchor Synaptobrevin to the Endoplasmic Reticulum Membrane (*) , 1996, The Journal of Biological Chemistry.

[43]  D. Hossfeld,et al.  Karyotype in multiple myeloma and plasma cell leukaemia. , 1993, European journal of cancer.

[44]  C. Mecucci,et al.  Molecular breakpoints of t(11;14)(q13;q32) in multiple myeloma. , 1995, Cancer genetics and cytogenetics.

[45]  J. Cigudosa,et al.  Cytogenetic analysis of 280 patients with multiple myeloma and related disorders: Primary breakpoints and clinical correlations , 1997, Genes, chromosomes & cancer.

[46]  T. Sugihara,et al.  Two human myeloma cell lines, amylase‐producing KMS‐12‐PE and amylase‐non‐producing KMS‐12‐BM, were established from a patient, having the same chromosome marker, t(11;14)(q13;q32) , 1989, British journal of haematology.

[47]  E. Schröck,et al.  Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3 , 1997, Nature Genetics.

[48]  E. Schuuring,et al.  Cytogenetics on released DNA fibers. , 1997, Verhandlungen der Deutschen Gesellschaft fur Pathologie.

[49]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[50]  A. Munnich,et al.  The RNA-binding properties of SMN: deletion analysis of the zebrafish orthologue defines domains conserved in evolution. , 1999, Human molecular genetics.

[51]  P. L. Bergsagel,et al.  Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  E. Schuuring,et al.  Detection of 11q13 rearrangements in hematologic neoplasias by double-color fluorescence in situ hybridization. , 1996, Blood.

[53]  M. Taniwaki,et al.  The Ig heavy chain gene is frequently involved in chromosomal translocations in multiple myeloma and plasma cell leukemia as detected by in situ hybridization. , 1997, Blood.