Naloxone effects on the visual evoked potentials recorded from the main and accessory visual pathways of the cat

1. The effects produced by repetitive i.v. administration of naloxone (1, 2 or 4 mg/kg) on the visual evoked potentials (VEPs) recorded along the main and accessory visual pathways were investigated in a modified "encéphale isolé" cat preparation. 2. Naloxone provoked a progressive amplitude enhancement and latency reduction of some components, depending on the structure analyzed, the dose used and the number of administrations applied. Electroretinogram (ERG) and N1-P1 VEP components of optic chiasm (OCh), lateral geniculate body (LGB) and visual cortex (VC) did not present significant changes. 3. Late-latency components (more than 200 msec) appeared in the VEPs of LGB and VC, mainly when 4 mg/kg were used. 4. Our results suggest that endogenous opioids have a modulatory role in the processing of sensory information at different levels of the visual system.

[1]  M. Herkenham,et al.  In vitro autoradiography of opiate receptors in rat brain suggests loci of "opiatergic" pathways. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Gutiérrez,et al.  Naloxone facilitates sensory precipitation of focal and generalized seizures: Evoked potentials and power spectral analysis in the cat , 1988, Experimental Neurology.

[3]  R. Coppola,et al.  Opiate pharmacology and individual differences. II. Somatosensory evoked potentials , 1981, PAIN.

[4]  M. Morrone,et al.  The role of gamma‐aminobutyric acid mediated inhibition in the response properties of cat lateral geniculate nucleus neurones. , 1984, The Journal of physiology.

[5]  E. W. Snyder,et al.  Naloxone epileptogenesis in monkeys. , 1981, The Journal of pharmacology and experimental therapeutics.

[6]  A. Schubert,et al.  The effect of high-dose fentanyl on human median nerve somatosensory-evoked responses , 1987, Canadian journal of anaesthesia = Journal canadien d'anesthesie.

[7]  M. Velasco,et al.  Effect of fentanyl and naloxone on human somatic and auditory-evoked potential components , 1984, Neuropharmacology.

[8]  C. P. Hughes,et al.  Afferent projections to the ventral lateral geniculate nucleus in the cat , 1981, Brain Research.

[9]  R. Altschuler,et al.  Immunocytochemical localization of enkephalin-like immunoreactivity in the retina of the guinea pig. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Gallagher,et al.  Manipulation of opiate activity in the amygdala alters memory processes. , 1978, Life sciences.

[11]  J. Szentágothai Lateral geniculate body structure and eye movement. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[12]  L L Iversen,et al.  Naloxone as a GABA antagonist: evidence from iontophoretic, receptor binding and convulsant studies. , 1978, European journal of pharmacology.

[13]  M. E. Lewis,et al.  Anatomy of CNS opioid receptors , 1988, Trends in Neurosciences.

[14]  A. Rosenquist,et al.  Afferent connections of the thalamic intralaminar nuclei in the cat , 1985, Brain Research.

[15]  H. Hydén,et al.  On the presence of met 5‐enkephalin receptors on the plasma membrane of deiters'neurons and their modulation of GABA transport , 1981, Journal of neuroscience research.

[16]  A. S. Pivovarov,et al.  Different role of opiate Mu-, Delta-, Kappa- and Sigma- receptors in modification of habituation of orthodronic evoked potential in the turtle's visual cortex , 1984, Brain Research.

[17]  E. John,et al.  Evoked Response Correlate of Symbol and Significate , 1978, Science.

[18]  D. M. Catley,et al.  Naloxone enhancement of spinal reflexes in the rabbit. , 1983, The Journal of physiology.

[19]  R. Mize Enkephalin‐like immunoreactivity in the cat superior colliculus: Distribution, ultrastructure, and colocalization with GABA , 1989, The Journal of comparative neurology.

[20]  M. Dubocovich,et al.  Enkephalins modulate [3H]dopamine release from rabbit retina in vitro. , 1983, The Journal of pharmacology and experimental therapeutics.

[21]  T. G. Smith,et al.  Naloxone antagonism of GABA-evoked membrane polarizations in cultured mouse spinal cord neurons , 1980, Brain Research.

[22]  J. D. McGaugh,et al.  Naloxone attenuates amnesia caused by amygdaloid stimulation: The involvement of a central opioid system , 1983, Brain Research.

[23]  J. Price,et al.  Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat , 1977, The Journal of comparative neurology.

[24]  H. Karten,et al.  Cluster-and-sheet pattern of enkephalin-like immunoreactivity in the superior colliculus of the cat , 1984, Neuroscience.

[25]  W. Burke,et al.  Extraretinal influences on the lateral geniculate nucleus. , 1978, Reviews of physiology, biochemistry and pharmacology.

[26]  Angeles Peinado-Manzano,et al.  Intervention of the lateral and central amygdala on the association of visual stimuli with different magnitudes of reinforcement , 1989, Behavioural Brain Research.

[27]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. , 1972, Journal of neurophysiology.

[28]  E. J. Simon,et al.  Opiate binding sites in the retina: properties and distribution. , 1980, The Journal of pharmacology and experimental therapeutics.

[29]  L. Fanjul,et al.  Role of the pupillary mechanism in the process of habituation of the visual pathways. , 1961, Electroencephalography and clinical neurophysiology.

[30]  R. Gutiérrez,et al.  Massed amygdaloid kindling in encéphale isolé cats: Its facilitation by naloxone , 1989, Epilepsy Research.

[31]  D. M. Catley,et al.  Post‐tetanic depression of spinal reflexes in the rabbit and the possible involvement of opioid peptides. , 1984, The Journal of physiology.

[32]  R. Dowman,et al.  Effects of naloxone and repeated stimulus presentation on cortical somatosensory evoked potential (SEP) amplitude in the rat , 1985, Experimental Neurology.

[33]  J. K. Harting,et al.  Organization of retinocollicular pathways in the cat , 1976, The Journal of comparative neurology.

[34]  A. Leventhal,et al.  The afferent ganglion cells and cortical projections of the retinal recipient zone (RRZ) of the cat's ‘pulvinar complex’ , 1980, The Journal of comparative neurology.

[35]  D Robertson,et al.  Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced‐paced cognitive tasks in man , 1977, The Journal of physiology.

[36]  W Singer,et al.  Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. , 1977, Physiological reviews.

[37]  F. T. Russchen,et al.  Amygdalopetal projections in the cat. I. Cortical afferent connections. A study with retrograde and anterograde tracing techniques , 1982, The Journal of comparative neurology.

[38]  R. Romo,et al.  Immunocytochemical study of enkephalin-like cell bodies in the thalamus of the cat , 1986, Brain Research.

[39]  Roundoff Errors in Signal Averaging Systems , 1986, IEEE Transactions on Biomedical Engineering.

[40]  G. Moruzzi,et al.  Brain stem reticular formation and activation of the EEG. , 1949, Electroencephalography and clinical neurophysiology.

[41]  J. Alonso,et al.  Immunocytochemical study of enkephalin-like cell bodies in the thalamus of the rat , 1989, Brain Research Bulletin.

[42]  H. Karten,et al.  Enkephalin-containing amacrine cells in the avian retina: immunohistochemical localization. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Uhl,et al.  Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. E. Lewis,et al.  Opiate receptor gradients in monkey cerebral cortex: correspondence with sensory processing hierarchies. , 1981, Science.

[45]  B. E. Hetzler,et al.  Effects of ketamine, naloxone, and physostigmine on flash evoked potentials in rat superior colliculus , 1989, Pharmacology Biochemistry and Behavior.

[46]  S. Lindstro¨m Synaptic organization of inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat , 1982, Brain Research.

[47]  Adam M. Sillito,et al.  The influence of GABAergic inhibitory processes on the receptive field structure of X and Y cells in cat dorsal lateral geniculate nucleus (dLGN) , 1983, Brain Research.

[48]  S. Molotchnikoff,et al.  Influences of cortico-pretectal fibers on responses of rat pretectal neurons , 1988, Brain Research.

[49]  M. Kuhar,et al.  Autoradiographic localization of opiate receptors in rat brain. II. The brain stem , 1977, Brain Research.