Enhanced RFICs in Nanoscale CMOS

Wireless and semiconductor industries have recently discussed their vision of fully autonomous and seamless wireless connectivity by combining advanced nanoscale CMOS technologies with innovative hybrid-domain circuits and systems solutions. One goal inside this broad vision is to develop a smart mobile companion device with high performance, adaptive connectivity, and high power efficiency. High performance is the essential ingredient to coping with the ever-increasing add-on functionalities in small handheld devices, integrating cellular, WiFi, Bluetooth, Global Positioning System and mobile TV. All of these generate many opportunities for furthering the horizons of radio frequency integrated circuits (RFICs) in the years to come.

[1]  Ulrich Rückert,et al.  A 200mV 32b subthreshold processor with adaptive supply voltage control , 2012, 2012 IEEE International Solid-State Circuits Conference.

[2]  Pui-In Mak,et al.  A $2\times V_{\rm DD}$-Enabled Mobile-TV RF Front-End With TV-GSM Interoperability in 1-V 90-nm CMOS , 2010, IEEE Transactions on Microwave Theory and Techniques.

[3]  Jeffrey S. Walling,et al.  A switched-capacitor power amplifier for EER/polar transmitters , 2011, 2011 IEEE International Solid-State Circuits Conference.

[4]  George Chien,et al.  A SAW-less GSM/GPRS/EDGE receiver embedded in a 65nm CMOS SoC , 2011, 2011 IEEE International Solid-State Circuits Conference.

[5]  Waleed Khalil,et al.  Expanding RFIC Horizons [From the Guest Editors' Desk] , 2012 .

[6]  Yorgos Palaskas,et al.  A Flip-Chip-Packaged 25.3 dBm Class-D Outphasing Power Amplifier in 32 nm CMOS for WLAN Application , 2011, IEEE Journal of Solid-State Circuits.

[7]  Liesbet Van der Perre,et al.  Green Software Defined Radios - Enabling seamless connectivity while saving on hardware and energy , 2009, Series on Integrated Circuits and Systems.

[8]  Pui-In Mak,et al.  A 0.46mm2 4dB-NF unified receiver front-end for full-band mobile TV in 65nm CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[9]  Greg Delagi Harnessing technology to advance the next-generation mobile user-experience , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[10]  B. Nauta,et al.  Analog circuits in ultra-deep-submicron CMOS , 2005, IEEE Journal of Solid-State Circuits.

[11]  Michiel Steyaert,et al.  Design of High Voltage xDSL Line Drivers in Standard CMOS , 2008 .

[12]  Behzad Razavi,et al.  Cognitive Radio Design Challenges and Techniques , 2010, IEEE Journal of Solid-State Circuits.

[13]  Luca Larcher,et al.  A 1.7-GHz 31dBm differential CMOS Class-E Power Amplifier with 58% PAE , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[14]  R. Castello,et al.  Single-Stage Low-Power Quadrature RF Receiver Front-End: The LMV Cell , 2006, IEEE Journal of Solid-State Circuits.

[15]  Edgar Sánchez-Sinencio,et al.  CMOS RF receiver system design: a systematic approach , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Eric A. M. Klumperink,et al.  A 300–800 MHz Tunable Filter and Linearized LNA Applied in a Low-Noise Harmonic-Rejection RF-Sampling Receiver , 2010, IEEE Journal of Solid-State Circuits.

[17]  Jonathan Borremans,et al.  A 40 nm CMOS 0.4–6 GHz Receiver Resilient to Out-of-Band Blockers , 2011, IEEE Journal of Solid-State Circuits.

[18]  Behzad Razavi,et al.  RF Microelectronics (2nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series) , 2011 .

[19]  Bram Nauta,et al.  A Software-Defined Radio Receiver in 65nm CMOS Robust to Out-of-Band Interference , 2009 .

[20]  B. Nauta,et al.  The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology , 2008, IEEE Journal of Solid-State Circuits.

[21]  Pui-In Mak,et al.  High-/Mixed-Voltage Analog and RF Circuit Techniques for Nanoscale CMOS , 2012 .