Using Numerical Insights to Improve Symbolic Computations

Numerical algebraic geometry provides a toolbox of numerical methods for performing computations involving systems of polynomial equations. Even though some of the computations which are performed on a computer using floating-point arithmetic are not certified, they can often be made very reliable using adaptive precision computations. Moreover, there is a wealth of information regarding the original problem which can be extracted from various numerical computation that can be used to improve subsequent symbolic computations to certify the result. This paper highlights two applications of such hybrid numeric-symbolic methods in algebraic geometry.

[1]  V. Strassen Gaussian elimination is not optimal , 1969 .

[2]  Jonathan D. Hauenstein,et al.  Recovering Exact Results from Inexact Numerical Data in Algebraic Geometry , 2013, Exp. Math..

[3]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[4]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[5]  J. Hauenstein Numerically Computing Real Points on Algebraic Sets , 2011, Acta Applicandae Mathematicae.

[6]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[7]  L. R. Kerr,et al.  On Minimizing the Number of Multiplications Necessary for Matrix Multiplication , 1969 .

[8]  Jonathan D. Hauenstein,et al.  Numerical Computation of the Hilbert Function and Regularity of a Zero Dimensional Scheme , 2014 .

[9]  Arthur G. Erdman,et al.  A New Mobility Formula for Spatial Mechanisms , 2007 .

[10]  Jonathan D. Hauenstein,et al.  Numerically deciding the arithmetically Cohen-Macaulayness of a projective scheme , 2016, J. Symb. Comput..

[11]  Paul Kutler,et al.  A Polynomial Time, Numerically Stable Integer Relation Algorithm , 1998 .

[12]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[13]  Jonathan D. Hauenstein,et al.  Witness sets of projections , 2010, Appl. Math. Comput..

[14]  J. Hauenstein,et al.  Mechanism mobility and a local dimension test , 2011 .

[15]  Jonathan D. Hauenstein,et al.  Membership tests for images of algebraic sets by linear projections , 2013, Appl. Math. Comput..

[16]  J. Landsberg The border rank of the multiplication of 2×2 matrices is seven , 2005 .

[17]  J. M. Landsberg,et al.  Equations for Lower Bounds on Border Rank , 2013, Exp. Math..

[18]  Jonathan D. Hauenstein,et al.  Adaptive Multiprecision Path Tracking , 2008, SIAM J. Numer. Anal..