A comparison of some domain decomposition and ILU preconditioned iterative methods for nonsymmetric elliptic problems

In recent years competitive domain decomposed preconditioned iterative tech niques have been developed for nonsymmetric elliptic problems In these tech niques a large problem is divided into many smaller problems whose requirements for coordination can be controlled to allow e ective solution on parallel machines A central question is how to choose these small problems and how to arrange the order of their solution Di erent speci cations of decomposition and solution or der lead to a plethora of algorithms possessing complementary advantages and disadvantages In this report we compare several methods including the additive Schwarz algorithm the classical multiplicative Schwarz algorithm an acceler ated multiplicative Schwarz algorithm the tile algorithm the CGK algorithm the CSPD algorithm and also the popular global ILU family of preconditioners on some nonsymmetric or inde nite elliptic model problems discretized by nite di erence methods The preconditioned problems are solved by the unrestarted GMRES method A version of the accelerated multiplicative Schwarz method is a consistently good performer

[1]  A. Greenbaum,et al.  Parallelizing preconditioned conjugate gradient algorithms , 1989 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  O. Widlund Some Schwarz Methods for Symmetric and Nonsymmetric Elliptic Problems , 1991 .

[4]  Jinchao Xu,et al.  A preconditioned GMRES method for nonsymmetric or indefinite problems , 1992 .

[5]  William Gropp,et al.  A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation , 1985, PP.

[6]  William D. Gropp,et al.  Parallel Performance of Domain-Decomposed Preconditioned Krylov Methods for PDEs with Locally Uniform Refinement , 1992, SIAM J. Sci. Comput..

[7]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[8]  Barry Smith A Parallel Implementation of an Iterative Substructuring Algorithm for Problems in Three Dimensions , 1993, SIAM J. Sci. Comput..

[9]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[10]  William Gropp,et al.  Domain-decomposable preconditioners for second-order upwind discretizations of multicomponent systems , 1990 .

[11]  William Gropp,et al.  Comparison of some domain decomposition algorithms for nonsymmetric elliptic problems , 1992 .

[12]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[13]  J. Meijerink,et al.  Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems , 1981 .

[14]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[15]  William Gropp,et al.  Convergence rate estimate for a domain decomposition method , 1992 .

[16]  Morten D. Skogen,et al.  Domain Decomposition Algorithms Of Schwarz Type, Designed For Massively Parallel Computers , 1992 .

[17]  W. James,et al.  A Conjugate Gradient-Truncated Direct Method for the Iterative Solution of the Reservoir Simulation Pressure Equation , 1981 .

[18]  R. K. Smith,et al.  Some upwinding techniques for finite element approximations of convection-diffusion equations , 1990 .

[19]  Olof B. Widlund,et al.  Multilevel additive methods for elliptic finite element problems in three dimensions , 2018 .

[20]  Joseph E. Pasciak,et al.  Preconditioned Iterative Methods for Nonselfadjoint or Indefinite Elliptic Boundary Value Problems. , 1984 .

[21]  P. Strevens Iii , 1985 .

[22]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[23]  Seymour V. Parter,et al.  Preconditioning second-order elliptic operators: Condition numbers and the distribution of the singular values , 1991 .

[24]  Xuejun Zhang,et al.  Multilevel Schwarz methods , 1992 .

[25]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[26]  H. Elman A stability analysis of incomplete LU factorizations , 1986 .

[27]  William Gropp,et al.  Domain decomposition on parallel computers , 1989, IMPACT Comput. Sci. Eng..

[28]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[29]  P. Rentrop,et al.  The Drazin inverse in multibody system dynamics , 1993 .

[30]  T. Chan,et al.  Interface preconditionings for domain-decomposed convection-diffusion operators , 1990 .

[31]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[32]  Joseph E. Pasciak,et al.  Iterative schemes for nonsymmetric and indefinite elliptic boundary value problems , 1993 .

[33]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[34]  William Gropp,et al.  Domain Decomposition with Local Mesh Refinement , 1992, SIAM J. Sci. Comput..