D-HaploDB: a database of definitive haplotypes determined by genotyping complete hydatidiform mole samples

The Definitive Haplotype Database (D-HaploDB) is a web-accessible resource of genome-wide definitive haplotypes determined from a collection of Japanese complete hydatidiform moles (CHMs), each of which carries a genome derived from a single sperm. Currently, the database contains genotypes for 281 439 common SNPs from 74 CHMs which were determined by a high-throughput array-based oligonucleotide hybridization technique. The database also presents maps of haplotype blocks and linkage disequilibrium bins together with tagSNPs that might prove useful for association studies of disease genes. Cryptic relatedness among the samples in this study is unlikely, because the formation of a CHM is a maternal event of rare sporadic occurrence, and its genotype is that of the incoming sperm. This is demonstrated by the absence of long extended shared haplotypes (ESHs). The D-HaploDB is freely accessible via the Internet at http://orca.gen.kyushu-u.ac.jp.

[1]  C. Carlson,et al.  Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. , 2004, American journal of human genetics.

[2]  Tomoko Tahira,et al.  Genome-wide definitive haplotypes determined using a collection of complete hydatidiform moles. , 2005, Genome research.

[3]  Toshihiro Tanaka The International HapMap Project , 2003, Nature.

[4]  M. Olivier A haplotype map of the human genome. , 2003, Nature.

[5]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[6]  Tatiana A. Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[7]  Pui-Yan Kwok,et al.  Paternal origins of complete hydatidiform moles proven by whole genome single-nucleotide polymorphism haplotyping. , 2002, Genomics.

[8]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[9]  Frank Dudbridge,et al.  Haplotype tagging for the identification of common disease genes , 2001, Nature Genetics.

[10]  Zhaohui S. Qin,et al.  Bioinformatics Original Paper an Efficient Comprehensive Search Algorithm for Tagsnp Selection Using Linkage Disequilibrium Criteria , 2022 .

[11]  Geoffrey B. Nilsen,et al.  Whole-Genome Patterns of Common DNA Variation in Three Human Populations , 2005, Science.

[12]  M. Stephens,et al.  Accounting for Decay of Linkage Disequilibrium in Haplotype Inference and Missing-data Imputation , 2022 .

[13]  M. Waterman,et al.  A dynamic programming algorithm for haplotype block partitioning , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[15]  P. Kwok,et al.  The homozygous complete hydatidiform mole: a unique resource for genome studies. , 1997, Genomics.

[16]  M. O’Donovan,et al.  DNA Pooling: a tool for large-scale association studies , 2002, Nature Reviews Genetics.

[17]  M. Olivier A haplotype map of the human genome , 2003, Nature.

[18]  S. Lewis,et al.  The generic genome browser: a building block for a model organism system database. , 2002, Genome research.