Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE)

HiRISE has been producing a large number of scientifically useful color products of Mars and other planetary objects. The three broad spectral bands, coupled with the highly sensitive 14 bit detectors and time delay integration, enable detection of subtle color differences. The very high spatial resolution of HiRISE can augment the mineralogic interpretations based on multispectral (THEMIS) and hyperspectral datasets (TES, OMEGA and CRISM) and thereby enable detailed geologic and stratigraphic interpretations at meter scales. In addition to providing some examples of color images and their interpretation, we describe the processing techniques used to produce them and note some of the minor artifacts in the output. We also provide an example of how HiRISE color products can be effectively used to expand mineral and lithologic mapping provided by CRISM data products that are backed by other spectral datasets. The utility of high quality color data for understanding geologic processes on Mars has been one of the major successes of HiRISE.

[1]  Alfred S. McEwen,et al.  High Resolution Imaging Science Experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars Reconnaissance Orbiter Primary Science Phase , 2008 .

[2]  A. McEwen,et al.  HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars , 2008 .

[3]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[4]  P. Christensen,et al.  Surface and crater‐exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products , 2008 .

[5]  Alfred S. McEwen,et al.  The Martian Surface: Visible to near-IR multispectral orbital observations of Mars , 2008 .

[6]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[7]  E. Opik,et al.  The Martian Surface , 1966, Science.

[8]  R. Jaumann,et al.  Mars Express High Resolution Stereo Camera spectrophotometric data: Characteristics and science analysis , 2007 .

[9]  Randolph L. Kirk,et al.  Compositional stratigraphy of clay‐bearing layered deposits at Mawrth Vallis, Mars , 2008 .

[10]  A. McEwen,et al.  Seasonally active frost‐dust avalanches on a north polar scarp of Mars captured by HiRISE , 2008 .

[11]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[12]  A. McEwen,et al.  A Closer Look at Water-Related Geologic Activity on Mars , 2007, Science.

[13]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[14]  Jeffrey R. Johnson,et al.  First in situ investigation of a dark wind streak on Mars , 2008 .

[15]  P. Christensen,et al.  Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .

[16]  A. McEwen,et al.  Meter-Scale Morphology of the North Polar Region of Mars , 2007, Science.

[17]  S. Smrekar,et al.  An overview of the Mars Reconnaissance Orbiter (MRO) science mission , 2007 .

[18]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 2007 .

[19]  R. E. Walker,et al.  Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .

[20]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[21]  A. McEwen,et al.  Fracture-Controlled Paleo-Fluid Flow in Candor Chasma, Mars , 2007, Science.

[22]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[23]  J. A. Grant,et al.  Light‐toned strata and inverted channels adjacent to Juventae and Ganges chasmata, Mars , 2008 .

[24]  L. Soderblom,et al.  Radiometric performance of the Voyager cameras , 1981 .

[25]  Nicolas Thomas,et al.  The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP) , 2010 .

[26]  R. Vincent Fundamentals of Geological and Environmental Remote Sensing , 1997 .

[27]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[28]  P. W. Francis Remote Geochemical Analysis; Elemental and Mineralogical Composition , 1994 .

[29]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[30]  M. J. Wolff,et al.  CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance , 2007 .

[31]  L. Soderblom The composition and mineralogy of the Martian surface from spectroscopic observations - 0.3 micron to 50 microns , 1992 .

[32]  Roger N. Clark,et al.  The US Geological Survey, digital spectral reflectance library: version 1: 0.2 to 3.0 microns , 1993 .