Visual pattern discrimination as an element of the fly's orientation behaviour

SummaryThe visually guided orientation behaviour of stationarily flying Musca domestica (females) has been investigated. Under such conditions, the flight activity does not influence the visual stimulus (“openloop”) and the tendency of a fly to orientate towards some visual object can be recorded as a yaw torque reaction (orientation response).—Orientation responses to flickering stripes reveal two different mechanisms of visual integration, namely a local flicker detecting mechanism and a specific kind of dynamic lateral interactions (Figs. 3, 5). The lateral interactions are mediated by a field of interconnections of receptors which are separated by at least 4 to 6 vertical rows of ommatidia (Figs. 3, 8). While stimulation of not more than 3 vertical rows of ommatidia activates only flicker detection, stimuli of more than 6° width may in addition exert an excitatory or an inhibitory influence as a consequence of the associated nonlinear interactions (Figs. 5, 7). The relevance of these lateral interactions for tracking and chasing behaviour is discussed. It is suggested that the fly's visual pattern discrimination rests essentially on these lateral interactions.

[1]  T. Poggio,et al.  Considerations on models of movement detection , 1973, Kybernetik.

[2]  Thomas Collett,et al.  Visual neurones in the anterior optic tract of the privet hawk moth , 1972, Journal of comparative physiology.

[3]  H. K. Hartline,et al.  SPATIAL SUMMATION OF INHIBITORY INFLUENCES IN THE EYE OF LIMULUS, AND THE MUTUAL INTERACTION OF RECEPTOR UNITS , 1958, The Journal of general physiology.

[4]  A. Anderson,et al.  The Ability of Honey Bees to Generalise Visual Stimuli , 1972 .

[5]  John Palka,et al.  Moving Movement Detectors , 1972 .

[6]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[7]  W. Reichardt,et al.  Detection and tracking of moving objects by the fly Musca domestica , 1976, Biological Cybernetics.

[8]  K. Kirschfeld,et al.  Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca , 1969, Kybernetik.

[9]  W. Reichardt,et al.  Visual orientation of the flyMusca domestica towards a horizontal stripe , 1973, Naturwissenschaften.

[10]  Karl Georg Götz,et al.  The optomotor equilibrium of theDrosophila navigation system , 1975, Journal of comparative physiology.

[11]  Bruce W. Knight,et al.  A Quantitative Description of the Dynamics of Excitation and Inhibition in the Eye of Limulus , 1970, The Journal of general physiology.

[12]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[13]  R Wehner,et al.  Spontaneous pattern preferences of Drosophila melanogaster to black areas in various parts of the visual field. , 1972, Journal of insect physiology.

[14]  John Thorson,et al.  Small-signal analysis of a visual reflex in the locust , 1966, Kybernetik.

[15]  G. D. McCann,et al.  Development and application of white-noise modeling techniques for studies of insect visual nervous system , 1973, Kybernetik.

[16]  D W Arnett,et al.  Spatial and temporal integration properties of units in first optic ganglion of dipterans. , 1972, Journal of neurophysiology.

[17]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[18]  Bernward Pick,et al.  Visual Flicker Induces Orientation Behaviour in the Fly Musca , 1974 .

[19]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[20]  R. Jander,et al.  Über das Formunterscheidungsvermögen der Schmeißfliege Calliphora erythrocephala , 1971, Zeitschrift für vergleichende Physiologie.

[21]  Rüdiger Wehner,et al.  The mechanism of visual pattern fixation in the walking fly,Drosophila melanogaster , 1975, Journal of comparative physiology.

[22]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  Werner Reichardt,et al.  A special class of nonlinear interactions in the visual system of the fly , 1976, Biological Cybernetics.

[24]  Werner Reichardt,et al.  Musterinduzierte Flugorientierung , 1973, Naturwissenschaften.

[25]  John Thorson,et al.  Small-signal analysis of a visual reflex in the locust , 1966, Kybernetik.

[26]  B. Hassenstein,et al.  Ommatidienraster und afferente Bewegungsintegration , 1951, Zeitschrift für vergleichende Physiologie.

[27]  Michael O'Shea,et al.  The anatomy and output connection of a locust visual interneurone; the lobular giant movement detector (LGMD) neurone , 1974, Journal of comparative physiology.

[28]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[29]  M. F. LAND,et al.  Head Movement of Flies during Visually Guided Flight , 1973, Nature.

[30]  H. Cruse Versuch einer quantitativen Beschreibung des Formensehens der Honigbiene , 1972, Kybernetik.

[31]  M. Hertz,et al.  Zur Physiologie des Formen- und Bewegungssehens II , 2004, Zeitschrift für vergleichende Physiologie.

[32]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[33]  T Poggio Processing of visual information in insects: A theoretical characterization , 1975 .

[34]  T. Collett,et al.  Binocular, Directionally Selective Neurones, Possibly Involved in the Optomotor Response of Insects , 1966, Nature.

[35]  H. W. Meyer Visuelle Schlüsselreize für die Auslösung der Beutefanghandlung beim Bachwasserläufer Velia caprai (Hemiptera, Heteroptera) , 1971, Zeitschrift für vergleichende Physiologie.

[36]  G. D. Mccann,et al.  Fundamental Properties of Intensity, Form, and Motion Perception in the Visual Nervous Systems of Calliphora phaenicia and Musca domestica , 1969, The Journal of general physiology.

[37]  C. Rowell,et al.  The orthopteran descending movement detector (DMD) neurones: a characterisation and review , 1971, Zeitschrift für vergleichende Physiologie.

[38]  M. Land Orientation by jumping spiders in the absence of visual feedback. , 1971, The Journal of experimental biology.

[39]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[40]  C. Wehrhahn Evidence for the role of retinal receptors R 7/8 in the orientation behaviour of the fly , 1976, Biological Cybernetics.

[41]  Daniel G. Keehn,et al.  Neural correlates of the optomotor response in the fly , 1967, Kybernetik.

[42]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[43]  K. Kirschfeld,et al.  Lateral Inhibition in the Com pound Eye of the Fly, Musca , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[44]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[45]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[46]  G. Geiger Optomotor responses of the fly Musca domestica to transient stimuli of edges and stripes , 2004, Kybernetik.

[47]  Ernst Wolf,et al.  Das Verhalten der Bienen gegenüber flimmernden Feldern und bewegten Objekten , 2004, Zeitschrift für vergleichende Physiologie.

[48]  Werner Reichardt,et al.  Visually induced height orientation of the fly Musca domestica , 1975, Biological Cybernetics.

[49]  K. Kirschfeld The visual system of Musca: Studies on optics, structure and function , 1972 .

[50]  Werner Reichardt,et al.  A theory of the pattern induced flight orientation of the fly Musca domestica II , 1975, Biological Cybernetics.

[51]  Tomaso Poggio,et al.  The orientation of flies towards visual patterns: On the search for the underlying functional interactions , 1975, Biological Cybernetics.

[52]  H. Homann Beiträge zur Physiologie der Spinnenaugen , 1928, Zeitschrift für vergleichende Physiologie.

[53]  J. Kien,et al.  Neuronal mechanisms subserving directional selectivity in the locust optomotor system , 1975, Journal of comparative physiology.

[54]  Werner Reichardt,et al.  Optical detection and fixation of objects by fixed flying flies , 1969, Naturwissenschaften.

[55]  Peter Kunze,et al.  Untersuchung des Bewegungssehens fixiert fliegender Bienen , 1961, Zeitschrift für Vergleichende Physiologie.

[56]  D. Varjú Stationary and dynamic responses during visual edge fixation by walking insects , 1975, Nature.