Multiple model moving horizon estimation approach to prognostics in coupled systems

The key objectives of this paper are to analyze and implement a novel moving horizon model predictive estimation scheme based on constrained nonlinear optimization techniques for inferring the survival functions and residual useful life (RUL) of components in coupled systems. The approach employs a data-driven prognostics framework that combines failure time data, static and dynamic (time-series) parametric data, and the Multiple Model Moving Horizon Estimation (MM-MHE) algorithm for predicting the survival functions of components based on their usage profiles. Validation of the approach has been provided based on data from an electronic throttle control (ETC) system. The proposed prognostic approach is modular and has the potential to be applicable to a wide variety of systems, ranging from automobiles to aerospace.

[1]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..

[2]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[3]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .

[4]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[5]  Necip Doganaksoy,et al.  Weibull Models , 2004, Technometrics.

[6]  Stephen P. Boyd,et al.  Embedded estimation of fault parameters in an unmanned aerial vehicle , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[7]  郑俊 Maintenance , 2002, The Islamic Law of Personal Status.

[8]  D. Mayne,et al.  MOVING HORIZON OBSERVERS , 1992 .

[9]  James B. Rawlings,et al.  Tutorial overview of model predictive control , 2000 .

[10]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[11]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[12]  Andrew K. S. Jardine,et al.  Maintenance, Replacement, and Reliability: Theory and Applications, Second Edition , 2013 .

[13]  Jun Yan Survival Analysis: Techniques for Censored and Truncated Data , 2004 .

[14]  Mark Schwabacher,et al.  A Survey of Data -Driven Prognostics , 2005 .

[15]  D. Gorinevsky,et al.  Model predictive estimation of evolving faults , 2006, 2006 American Control Conference.

[16]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[17]  Richard D. Braatz,et al.  Fault Detection and Diagnosis in Industrial Systems , 2001 .

[18]  Marko Bacic,et al.  Model predictive control , 2003 .

[19]  R. Kay The Analysis of Survival Data , 2012 .

[20]  Manfred Morari,et al.  Moving horizon estimation for hybrid systems , 2002, IEEE Trans. Autom. Control..

[21]  K. Pattipati,et al.  Model-based Prognostic Techniques , 2003 .

[22]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[23]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[24]  Satnam Singh,et al.  A prognostic framework for health management of coupled systems , 2011, 2011 IEEE Conference on Prognostics and Health Management.