Standardized Expression of 18F-NAV4694 and 11C-PiB β-Amyloid PET Results with the Centiloid Scale

A common quantitative output value for PET measures of β-amyloid (Aβ) binding across tracers and methods would allow better comparison of data across sites and application of universal diagnostic and prognostic values. A method has recently been developed that generates a unit of measurement called the centiloid. We applied this method to 2-[2-18F-fluoro-6-(methylamino)-3-pyridinyl]-1-benzofuran-5-ol (18F-NAV4694) and 11C-Pittsburgh compound B (11C-PiB) Aβ images to derive the scaling factor required to express tracer binding in centiloids. Methods: Fifty-five participants, including 10 young controls (33 ± 7 y old), underwent both 11C-PiB and 18F-NAV4694 imaging no more than 3 mo apart, with the images acquired 50–70 min after tracer injection. The images were spatially normalized and analyzed using the standard centiloid method and regions (cortex and whole-cerebellum reference) downloaded from the Global Alzheimer Association Interactive Network website. Results: SUV ratios (SUVRs) showed a strong correlation in tracer binding (18F-NAV4694 SUVR = 1.09 × 11C-PiB SUVR – 0.08, R2 = 0.99). The equation to convert 18F-NAV4694 to centiloids [100 × (18F-NAV4694 SUVR – 1.028)/1.174] was similar to a published equation for 11C-PiB [100 × (11C-PiB SUVR – 1.009)/1.067]. In the young controls, the variance ratio (18F-NAV4694 centiloid SD divided by 11C-PiB centiloid SD) was 0.85. Conclusion: The results for both 11C-PiB and 18F-NAV4694 can now be expressed in centiloids, an important step that should allow better clinical and research use of Aβ imaging. The standard centiloid method also showed that 18F-NAV4694 has slightly higher Aβ binding and lower variance than 11C-PiB, important properties for detecting early Aβ deposition and change over time.

[1]  Rik Ossenkoppele,et al.  Comparison of Simplified Parametric Methods for Visual Interpretation of 11C-Pittsburgh Compound-B PET Images , 2014, The Journal of Nuclear Medicine.

[2]  Masanori Ichise,et al.  PET Quantification of 18F-Florbetaben Binding to β-Amyloid Deposits in Human Brains , 2013, The Journal of Nuclear Medicine.

[3]  Chengjie Xiong,et al.  Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group , 2016, PloS one.

[4]  S. DeKosky,et al.  Kinetic Modeling of Amyloid Binding in Humans using PET Imaging and Pittsburgh Compound-B , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  C. Rowe,et al.  Imaging of amyloid β in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism , 2008, The Lancet Neurology.

[6]  Paul Maruff,et al.  Research and standardization in Alzheimer's trials: Reaching international consensus , 2013, Alzheimer's & Dementia.

[7]  E. Salmon,et al.  18F‐flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: A phase 2 trial , 2010, Annals of neurology.

[8]  Christer Halldin,et al.  Clinical Validation of 18F-AZD4694, an Amyloid-β–Specific PET Radioligand , 2012, The Journal of Nuclear Medicine.

[9]  Lennart Thurfjell,et al.  The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data , 2015, Alzheimer's & Dementia.

[10]  Lars Farde,et al.  Characterization of AZD4694, a novel fluorinated Aβ plaque neuroimaging PET radioligand , 2010, Journal of neurochemistry.

[11]  James Robert Brašić,et al.  In Vivo Imaging of Amyloid Deposition in Alzheimer Disease Using the Radioligand 18F-AV-45 (Flobetapir F 18) , 2010, Journal of Nuclear Medicine.

[12]  R. Coleman,et al.  Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study , 2012, The Lancet Neurology.

[13]  Robert A. Koeppe,et al.  The Centiloid Project: Standardizing quantitative amyloid plaque estimation by PET , 2015, Alzheimer's & Dementia.

[14]  Nelleke Tolboom,et al.  Image-derived input functions for PET brain studies , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[15]  C. Rowe,et al.  Quantitative approaches to amyloid imaging. , 2011, Methods in molecular biology.

[16]  L. Thurfjell,et al.  Automated quantification of [18F]flutemetamol data - Comparison with standard of truth based on histopathology , 2013 .

[17]  Gina N. LaRossa,et al.  [11C]PIB in a nondemented population , 2006, Neurology.

[18]  R. Boellaard,et al.  Test-retest variability of quantitative [11C]PIB studies in Alzheimer’s disease , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[19]  S. DeKosky,et al.  Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[20]  M. Mintun,et al.  Amyloid-β Imaging with Pittsburgh Compound B and Florbetapir: Comparing Radiotracers and Quantification Methods , 2013, The Journal of Nuclear Medicine.

[21]  Victor L. Villemagne,et al.  Brain Amyloid Imaging , 2011, The Journal of Nuclear Medicine.