Evolving Control Strategies for Suppressing Heteroclinic Bursting

We combine a detailed understanding of the dynamics of low-dimensional models of burstingin the turbulent boundary layer with the method of Genetic Programming to obtain appropriate control strategies for the suppressionof such bursting in these models. The study is applicable toO(2) symmetric systems for which structurally stable heteroclinic cycles are the dominant dynamical features. We argue that such a combined approach can prove a useful tool in achieving control in higher-dimensional models where actual analysis is prohibitively complicated. The results of the present study are compared to near-optimal controllers derived in previous studies.

[1]  R. K. Joshi,et al.  Thermal diffusion factors for krypton and xenon , 1963 .

[2]  F. A. Schraub,et al.  The structure of turbulent boundary layers , 1967, Journal of Fluid Mechanics.

[3]  Stephen J. Kline,et al.  The production of turbulence near a smooth wall in a turbulent boundary layer , 1971, Journal of Fluid Mechanics.

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  John L. Lumley,et al.  Turbulent Drag Reduction by Polymer Additives: A Survey , 1985 .

[6]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[7]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[8]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[9]  John Guckenheimer,et al.  Kuramoto-Sivashinsky dynamics on the center-unstable manifold , 1989 .

[10]  Jerrold E. Marsden,et al.  Controlling homoclinic orbits , 1989 .

[11]  P. Holmes Can dynamical systems approach turbulence , 1990 .

[12]  Gal Berkooz,et al.  Intermittent dynamics in simple models of the turbulent wall layer , 1991, Journal of Fluid Mechanics.

[13]  D. Armbruster,et al.  Heteroclinic orbits in a spherically invariant system , 1991 .

[14]  Parviz Moin,et al.  The dimension of attractors underlying periodic turbulent Poiseuille flow , 1992, Journal of Fluid Mechanics.

[15]  Philip Holmes,et al.  Heteroclinic cycles and modulated travelling waves in a system with D 4 symmetry , 1992 .

[16]  Philip Holmes,et al.  Interaction of adjacent bursts in the wall region , 1994 .

[17]  Philip Holmes,et al.  Control of noisy heteroclinic cycles , 1994 .

[18]  Philip Holmes,et al.  Control of Bursting in Boundary Layer Models , 1994 .

[19]  Harry Dankowicz,et al.  Local models of spatio-temporally complex fields , 1996 .

[20]  Robbins,et al.  Identification of intermittent ordered patterns as heteroclinic connections. , 1996, Physical review letters.

[21]  P. Holmes,et al.  Suppression of bursting , 1997, Autom..

[22]  A robust heteroclinic cycle in an ? steady-state mode interaction , 1998 .