Tissue specific long non-coding RNAs are involved in aroma formation of black tea

[1]  Guanglin Li,et al.  Genome-wide identification and functional analysis of circRNAs in Zea mays , 2018, bioRxiv.

[2]  Genome-wide identification and characterization of novel lncRNAs in Ginkgo biloba , 2018, Trees.

[3]  Caiyun He,et al.  Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening , 2018, DNA research : an international journal for rapid publication of reports on genes and genomes.

[4]  J. Bennetzen,et al.  Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality , 2018, Proceedings of the National Academy of Sciences.

[5]  Robert D. Finn,et al.  Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families , 2017, Nucleic Acids Res..

[6]  T. Sharma,et al.  Discovery of microRNA-target modules of African rice (Oryza glaberrima) under salinity stress , 2018, Scientific Reports.

[7]  D. Nigam,et al.  High Quality Unigenes and Microsatellite Markers from Tissue Specific Transcriptome and Development of a Database in Clusterbean (Cyamopsis tetragonoloba, L. Taub) , 2017, Genes.

[8]  Chaoling Wei,et al.  Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.) , 2017, Scientific Reports.

[9]  M. E. Pè,et al.  Long noncoding RNAs in the model species Brachypodium distachyon , 2017, Scientific Reports.

[10]  P. Singh,et al.  Identification of long non-coding RNA in rice lines resistant to Rice blast pathogen Maganaporthe oryzae , 2017, Bioinformation.

[11]  Chaoling Wei,et al.  Absolute quantification of microRNAs in green tea (Camellia sinensis) by stem-loop quantitative real-time PCR. , 2017, Journal of the science of food and agriculture.

[12]  Li Wang,et al.  Identification and characterization of novel lncRNAs in Arabidopsis thaliana. , 2017, Biochemical and biophysical research communications.

[13]  Shivi Tyagi,et al.  Survey of High Throughput RNA-Seq Data Reveals Potential Roles for lncRNAs during Development and Stress Response in Bread Wheat , 2017, Front. Plant Sci..

[14]  En-Hua Xia,et al.  The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. , 2017, Molecular plant.

[15]  T. Mondal,et al.  Cultivation, Improvement, and Environmental Impacts of Tea , 2017 .

[16]  Jinke Lin,et al.  Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea (Camellia sinensis) , 2017, PloS one.

[17]  K. Lindblad-Toh,et al.  FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome , 2017, Nucleic acids research.

[18]  Jiangxin Wang,et al.  Genome-wide long non-coding RNA screening, identification and characterization in a model microorganism Chlamydomonas reinhardtii , 2016, Scientific Reports.

[19]  Mukesh Jain,et al.  Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development , 2016, Scientific Reports.

[20]  Swati Megha,et al.  Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus , 2016, PloS one.

[21]  Fariza Tahi,et al.  miRNAFold: a web server for fast miRNA precursor prediction in genomes , 2016, Nucleic Acids Res..

[22]  Min Chen,et al.  Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency , 2016, Molecular Genetics and Genomics.

[23]  Jian Zhang,et al.  Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy , 2016, Oncotarget.

[24]  Cai-rui Lu,et al.  Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum) , 2016, Science China Life Sciences.

[25]  M. Szcześniak,et al.  CANTATAdb: A Collection of Plant Long Non-Coding RNAs , 2015, Plant & cell physiology.

[26]  Andreu Paytuví Gallart,et al.  GREENC: a Wiki-based database of plant lncRNAs , 2015, Nucleic Acids Res..

[27]  P. Chand,et al.  Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review , 2015, Plant Cell Reports.

[28]  Guanglin Li,et al.  Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize , 2015, BMC Genomics.

[29]  J. A. Chekanova,et al.  Long non-coding RNAs and their functions in plants. , 2015, Current opinion in plant biology.

[30]  R. Shiekhattar,et al.  The many faces of long noncoding RNAs , 2015, The FEBS journal.

[31]  He Zhang,et al.  Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution , 2015, Nature Biotechnology.

[32]  Xue Liu,et al.  Long Non-coding RNAs and Their Biological Roles in Plants , 2015, Genom. Proteom. Bioinform..

[33]  P. Ahuja,et al.  Histochemical evaluation of catechins in PEG stressed transgenic tea plants using catechin-specific-diazotized sulfanilamide reagent , 2015, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[34]  Zhen Su,et al.  PNRD: a plant non-coding RNA database , 2014, Nucleic Acids Res..

[35]  Ronny Lorenz,et al.  The ViennaRNA web services. , 2015, Methods in molecular biology.

[36]  L. Qu,et al.  Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice , 2014, Genome Biology.

[37]  W. Chao,et al.  Identification and Evaluation of Reliable Reference Genes for Quantitative Real-Time PCR Analysis in Tea Plant (Camellia sinensis (L.) O. Kuntze) , 2014, International journal of molecular sciences.

[38]  Mingle Wang,et al.  Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis , 2014, BMC Plant Biology.

[39]  W. Terzaghi,et al.  Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light , 2014, Proceedings of the National Academy of Sciences.

[40]  Chang Liu,et al.  Genome-Wide Identification and Characterization of Long Intergenic Non-Coding RNAs in Ganoderma lucidum , 2014, PloS one.

[41]  Qingli Guo,et al.  Identification of Maize Long Non-Coding RNAs Responsive to Drought Stress , 2014, PloS one.

[42]  T. Sharma,et al.  Genome-wide Analysis of Zinc Transporter Genes of Maize (Zea mays) , 2014, Plant Molecular Biology Reporter.

[43]  Steven R. Eichten,et al.  Genome-wide discovery and characterization of maize long non-coding RNAs , 2014, Genome Biology.

[44]  Quan-wu Zhu,et al.  Identification of miRNAs and their targets in tea (Camellia sinensis) , 2013, Journal of Zhejiang University SCIENCE B.

[45]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[46]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[47]  M. Axtell Classification and comparison of small RNAs from plants. , 2013, Annual review of plant biology.

[48]  Jeannie T. Lee,et al.  Long Noncoding RNAs: Past, Present, and Future , 2013, Genetics.

[49]  Meng Wang,et al.  Widespread Long Noncoding RNAs as Endogenous Target Mimics for MicroRNAs in Plants1[W] , 2013, Plant Physiology.

[50]  J. Kocher,et al.  CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model , 2013, Nucleic acids research.

[51]  N. Chua,et al.  Genome-Wide Analysis Uncovers Regulation of Long Intergenic Noncoding RNAs in Arabidopsis[C][W] , 2012, Plant Cell.

[52]  Meng Wang,et al.  PsRobot: a web-based plant small RNA meta-analysis toolbox , 2012, Nucleic Acids Res..

[53]  Qian-Hao Zhu,et al.  Molecular Functions of Long Non-Coding RNAs in Plants , 2012, Genes.

[54]  Howard Y. Chang,et al.  Molecular mechanisms of long noncoding RNAs. , 2011, Molecular cell.

[55]  Patrick Xuechun Zhao,et al.  psRNATarget: a plant small RNA target analysis server , 2011, Nucleic Acids Res..

[56]  T. Mondal,et al.  Computational Identification of Conserved microRNAs and Their Targets in Tea (Camellia sinensis) , 2010 .

[57]  G. R. Prabu,et al.  Computational Identification of miRNAs and Their Target Genes from Expressed Sequence Tags of Tea (Camellia sinensis) , 2010, Genom. Proteom. Bioinform..

[58]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[59]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[60]  C. Wahlestedt,et al.  Regulatory roles of natural antisense transcripts , 2009, Nature Reviews Molecular Cell Biology.

[61]  D. Spector,et al.  Long noncoding RNAs: functional surprises from the RNA world. , 2009, Genes & development.

[62]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[63]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[64]  Stefan Götz,et al.  Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics , 2007, International journal of plant genomics.

[65]  M. Todesco,et al.  Target mimicry provides a new mechanism for regulation of microRNA activity , 2007, Nature Genetics.

[66]  Yong Zhang,et al.  CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine , 2007, Nucleic Acids Res..

[67]  P. Schieberle,et al.  Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. , 2006, Journal of agricultural and food chemistry.

[68]  Thomas L. Madden,et al.  BLAST: at the core of a powerful and diverse set of sequence analysis tools , 2004, Nucleic Acids Res..

[69]  Susumu Goto,et al.  The KEGG databases at GenomeNet , 2002, Nucleic Acids Res..

[70]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[71]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[72]  P. Briffeuil,et al.  Match-Box_server: a multiple sequence alignment tool placing emphasis on reliability , 1997, Comput. Appl. Biosci..

[73]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[74]  W. Wight Nomenclature and Classification of the Tea Plant , 1959, Nature.