On the Performance of SQP Methods for Nonlinear Optimization

This paper concerns some practical issues associated with the formulation of sequential quadratic programming (SQP) methods for large-scale nonlinear optimization. SQP methods find approximate solutions of a sequence of quadratic programming (QP) subproblems in which a quadratic model of the Lagrangian is minimized subject to the linearized constraints. Numerical results are given for 1153 problems from the CUTEst test collection. The results indicate that SQP methods based on maintaining a quasi-Newton approximation to the Hessian of the Lagrangian function are both reliable and efficient for general large-scale optimization problems. In particular, the results show that in some situations, quasi-Newton SQP methods are more efficient than interior methods that utilize the exact Hessian of the Lagrangian. The paper concludes with discussion of an SQP method that employs both approximate and exact Hessian information. In this approach the quadratic programming subproblem is either the conventional subproblem defined in terms of a positive-definite quasi-Newton approximate Hessian or a convexified subproblem based on the exact Hessian.

[1]  Daniel P. Robinson,et al.  A second derivative SQP method with imposed descent , 2008 .

[2]  Michael A. Saunders,et al.  User''s guide for NPSOL (Ver-sion 4.0): A FORTRAN package for nonlinear programming , 1984 .

[3]  Sven Leyffer,et al.  User manual for filterSQP , 1998 .

[4]  William W. Hager,et al.  A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization , 2004, SIAM J. Optim..

[5]  W. Murray,et al.  Newton methods for large-scale linear equality-constrained minimization , 1993 .

[6]  Philippe L. Toint,et al.  An Assessment of Nonmonotone Linesearch Techniques for Unconstrained Optimization , 1996, SIAM J. Sci. Comput..

[7]  Nicholas I. M. Gould,et al.  On the Convergence of Successive Linear-Quadratic Programming Algorithms , 2005, SIAM J. Optim..

[8]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[9]  Todd Munson,et al.  Benchmarking optimization software with COPS. , 2001 .

[10]  Philip E. Gill,et al.  Limited-Memory Reduced-Hessian Methods for Large-Scale Unconstrained Optimization , 2003, SIAM J. Optim..

[11]  A. Forsgren Inertia-controlling factorizations for optimization algorithms , 2002 .

[12]  Peter Spellucci,et al.  An SQP method for general nonlinear programs using only equality constrained subproblems , 1998, Math. Program..

[13]  Philip E. Gill,et al.  Methods for convex and general quadratic programming , 2014, Mathematical Programming Computation.

[14]  Nicholas I. M. Gould,et al.  On Modified Factorizations for Large-Scale Linearly Constrained Optimization , 1999, SIAM J. Optim..

[15]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Local Convergence , 2005, SIAM J. Optim..

[16]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[17]  Klaus Schittkowski,et al.  NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[18]  P. Gill,et al.  Maintaining LU factors of a general sparse matrix , 1987 .

[19]  Philip E. Gill,et al.  Newton-type methods for unconstrained and linearly constrained optimization , 1974, Math. Program..

[20]  P. Gill,et al.  Some theoretical properties of an augmented lagrangian merit function , 1986 .

[21]  Philippe L. Toint,et al.  CUTEst : a constrained testing environment with safe threads , 2013 .

[22]  L. Grippo,et al.  A truncated Newton method with nonmonotone line search for unconstrained optimization , 1989 .

[23]  Carlo A. Furia,et al.  User manual , 2023, International Transport Forum Policy Papers.

[24]  Michael A. Saunders,et al.  User's Guide for SQOPT Version 7.5: Software for Large-Scale Linear and Quadratic Programming , 2016 .

[25]  Daniel P. Robinson,et al.  A Globally Convergent Stabilized SQP Method , 2013, SIAM J. Optim..

[26]  Elizabeth Eskow,et al.  A New Modified Cholesky Factorization , 1990, SIAM J. Sci. Comput..

[27]  C. B. Luis Une caractérisation complète des minima locaux en programmation quadratique , 1980 .

[28]  Roger Fletcher,et al.  Nonlinear programming and nonsmooth optimization by successive linear programming , 1989, Math. Program..

[29]  Nicholas I. M. Gould,et al.  A Second Derivative SQP Method: Local Convergence and Practical Issues , 2010, SIAM J. Optim..

[30]  Anders Forsgren,et al.  Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..

[31]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[32]  Vyacheslav Kungurtsev,et al.  Second-Derivative Sequential Quadratic Programming Methods for Nonlinear Optimization , 2013 .

[33]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[34]  Nicholas I. M. Gould,et al.  CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization , 2013, Computational Optimization and Applications.

[35]  Nicholas I. M. Gould,et al.  An algorithm for nonlinear optimization using linear programming and equality constrained subproblems , 2004, Math. Program..

[36]  P. Gill,et al.  Sequential Quadratic Programming Methods , 2012 .

[37]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[38]  L. Grippo,et al.  A class of nonmonotone stabilization methods in unconstrained optimization , 1991 .

[39]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[40]  P. Gill,et al.  On the identification of local minimizers in inertia-controlling methods for quadratic programming , 1991 .

[41]  P. Gill,et al.  Fortran package for nonlinear programming. User's Guide for NPSOL (Version 4. 0) , 1986 .

[42]  Jorge Nocedal,et al.  On the use of piecewise linear models in nonlinear programming , 2011, Mathematical Programming.

[43]  J. Greenstadt On the relative efficiencies of gradient methods , 1967 .

[44]  Luigi Grippo,et al.  Newton-type algorithms with nonmonotone line search for large-scale unconstrained optimization , 1988 .

[45]  Nicholas I. M. Gould,et al.  A Second Derivative SQP Method: Global Convergence , 2010, SIAM J. Optim..

[46]  J. Nocedal,et al.  A sequential quadratic programming algorithm with an additional equality constrained phase , 2012 .

[47]  Leon S. Lasdon,et al.  Intopt: an interior point algorithm for large scale nonlinear optimization , 1995 .

[48]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[49]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .