A Modest Approach to Modelling and Checking Markov Automata

Markov automata are a compositional modelling formalism with continuous stochastic time, discrete probabilities, and nondeterministic choices. In this paper, we present extensions to the Modest language and the mcsta model checker to describe and analyse Markov automata models. Modest is an expressive high-level language with roots in process algebra that allows large models to be specified in a succinct, modular way. We explain its use for Markov automata and illustrate the advantages over alternative languages. The verification of Markov automata models requires dedicated algorithms for time-bounded probabilistic reachability and long-run average rewards. We describe several recently developed such algorithms as implemented in mcsta and evaluate them on a comprehensive set of benchmarks. Our evaluation shows that mcsta improves the performance and scalability of Markov automata model checking compared to earlier and alternative tools.

[1]  Mariëlle Stoelinga,et al.  Modelling and Analysis of Markov Reward Automata , 2014, ATVA.

[2]  Sean Sedwards,et al.  Lightweight Statistical Model Checking in Nondeterministic Continuous Time , 2018, ISoLA.

[3]  Sebastian Junges,et al.  JANI: Quantitative Model and Tool Interaction , 2017, TACAS.

[4]  Mariëlle Stoelinga,et al.  A Rigorous, Compositional, and Extensible Framework for Dynamic Fault Tree Analysis , 2010, IEEE Transactions on Dependable and Secure Computing.

[5]  Lijun Zhang,et al.  A Semantics for Every GSPN , 2013, Petri Nets.

[6]  Christel Baier,et al.  Ensuring the Reliability of Your Model Checker: Interval Iteration for Markov Decision Processes , 2017, CAV.

[7]  Holger Hermanns,et al.  The Modest Toolset: An Integrated Environment for Quantitative Modelling and Verification , 2014, TACAS.

[8]  Holger Hermanns,et al.  Long-Run Rewards for Markov Automata , 2017, TACAS.

[9]  Axel Legay,et al.  Scalable Verification of Markov Decision Processes , 2013, SEFM Workshops.

[10]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[11]  Christel Baier,et al.  Model Checking Probabilistic Systems , 2018, Handbook of Model Checking.

[12]  Sven Schewe,et al.  Finite optimal control for time-bounded reachability in CTMDPs and continuous-time Markov games , 2010, Acta Informatica.

[13]  Holger Hermanns,et al.  Verification of Open Interactive Markov Chains , 2012, FSTTCS.

[14]  Arnd Hartmanns,et al.  The Quantitative Verification Benchmark Set , 2019, TACAS.

[15]  Joost-Pieter Katoen,et al.  A compositional modelling and analysis framework for stochastic hybrid systems , 2012, Formal Methods in System Design.

[16]  Benjamin Monmege,et al.  Interval iteration algorithm for MDPs and IMDPs , 2017, Theor. Comput. Sci..

[17]  Pavel Krcál,et al.  Scalable Analysis of Fault Trees with Dynamic Features , 2015, 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.

[18]  Lijun Zhang,et al.  On Probabilistic Automata in Continuous Time , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[19]  Hassan Hatefi Ardakani Finite horizon analysis of Markov automata , 2016 .

[20]  Joost-Pieter Katoen,et al.  Sound Value Iteration , 2018, CAV.

[21]  Hassan Hatefi-Ardakani Finite horizon analysis of Markov automata , 2017 .

[22]  Joost-Pieter Katoen,et al.  Analysis of Timed and Long-Run Objectives for Markov Automata , 2014, Log. Methods Comput. Sci..

[23]  Sebastian Junges,et al.  A Storm is Coming: A Modern Probabilistic Model Checker , 2017, CAV.

[24]  Marco Beccuti,et al.  30 Years of GreatSPN , 2016 .

[25]  Holger Hermanns,et al.  Markov Automata on Discount! , 2018, MMB.

[26]  David Coppit,et al.  The Galileo fault tree analysis tool , 1999, Digest of Papers. Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing (Cat. No.99CB36352).

[27]  Christian Georg Eisentraut,et al.  Principles of Markov automata , 2017 .

[28]  Krishnendu Chatterjee,et al.  Verification of Markov Decision Processes Using Learning Algorithms , 2014, ATVA.

[29]  Jan Kretínský,et al.  The 2019 Comparison of Tools for the Analysis of Quantitative Formal Models - (QComp 2019 Competition Report) , 2019, TACAS.

[30]  Sean Sedwards,et al.  A Statistical Model Checker for Nondeterminism and Rare Events , 2018, TACAS.

[31]  Christel Baier,et al.  Performance evaluation and model checking join forces , 2010, Commun. ACM.

[32]  Joost-Pieter Katoen,et al.  Quantitative Timed Analysis of Interactive Markov Chains , 2012, NASA Formal Methods.

[33]  Holger Hermanns,et al.  Continuous-Time Markov Decisions based on Partial Exploration , 2018, ATVA.

[34]  ˇ JanKr,et al.  Scalable Analysis of Fault Trees with Dynamic Features , 2015 .

[35]  Yuliya Butkova,et al.  Optimal Time-Bounded Reachability Analysis for Concurrent Systems , 2019, TACAS.

[36]  Joost-Pieter Katoen,et al.  Efficient Modelling and Generation of Markov Automata , 2012, CONCUR.

[37]  Sebastian Junges,et al.  Markov automata with multiple objectives , 2017, Formal Methods in System Design.

[38]  Holger Hermanns,et al.  Optimal Continuous Time Markov Decisions , 2015, ATVA.