LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS

Considering the Dirichlet problem for Poisson's equation in two and three dimensions, we derive a posteriori error estimators for finite element solutions with interpolated boundary values. The estimators are reliable and (locally) efficient with respect to the energy norm error, also in the case of discontinuous boundary values and load terms that are not square-integrable due to singularities at the boundary of the underlying domain. Moreover, we propose an adaptive algorithm based upon these estimators and test it also in nonsmooth cases of the aforementioned type: its convergence rate is optimal.

[1]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[2]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[3]  Willy Dörfler,et al.  An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..

[4]  Andreas Veeser,et al.  Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.

[5]  Mark Ainsworth,et al.  A Posteriori Error Estimators and Adaptivity for Finite Element Approximation of the Non-Homogeneous Dirichlet Problem , 2001, Adv. Comput. Math..

[6]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[7]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[8]  B Faermann Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case , 2000 .

[9]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[10]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[11]  Birgit Faermann,et al.  Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.

[12]  Andreas Veeser,et al.  A Posteriori Error Estimators for Regularized Total Variation of Characteristic Functions , 2003, SIAM J. Numer. Anal..

[13]  W. Hackbusch Elliptic Differential Equations , 1992 .

[14]  Stefan A. Sauter,et al.  A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions , 2003, Computing.

[15]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[16]  A. Kufner Weighted Sobolev Spaces , 1985 .

[17]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[18]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .

[19]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..