LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS
暂无分享,去创建一个
[1] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[2] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[3] Willy Dörfler,et al. An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation , 1998, Math. Comput..
[4] Andreas Veeser,et al. Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.
[5] Mark Ainsworth,et al. A Posteriori Error Estimators and Adaptivity for Finite Element Approximation of the Non-Homogeneous Dirichlet Problem , 2001, Adv. Comput. Math..
[6] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[7] Carsten Carstensen,et al. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.
[8] B Faermann. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case , 2000 .
[9] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[10] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[11] Birgit Faermann,et al. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.
[12] Andreas Veeser,et al. A Posteriori Error Estimators for Regularized Total Variation of Characteristic Functions , 2003, SIAM J. Numer. Anal..
[13] W. Hackbusch. Elliptic Differential Equations , 1992 .
[14] Stefan A. Sauter,et al. A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions , 2003, Computing.
[15] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..
[16] A. Kufner. Weighted Sobolev Spaces , 1985 .
[17] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[18] Zhonghai Ding,et al. A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .
[19] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..