Estimating the Weight of Metric Minimum Spanning Trees in Sublinear Time
暂无分享,去创建一个
In this paper we present a sublinear-time $(1+\varepsilon)$-approximation randomized algorithm to estimate the weight of the minimum spanning tree of an $n$-point metric space. The running time of the algorithm is $\widetilde{\mathcal{O}}(n/\varepsilon^{\mathcal{O}(1)})$. Since the full description of an $n$-point metric space is of size $\Theta(n^2)$, the complexity of our algorithm is sublinear with respect to the input size. Our algorithm is almost optimal as it is not possible to approximate in $o(n)$ time the weight of the minimum spanning tree to within any factor. We also show that no deterministic algorithm can achieve a $B$-approximation in $o(n^2/B^3)$ time. Furthermore, it has been previously shown that no $o(n^2)$ algorithm exists that returns a spanning tree whose weight is within a constant times the optimum.