A spring-loaded mechanism for the conformational change of influenza hemagglutinin

[1]  L. Pauling,et al.  Compound Helical Configurations of Polypeptide Chains: Structure of Proteins of the α-Keratin Type , 1953, Nature.

[2]  F. Crick,et al.  The packing of α‐helices: simple coiled‐coils , 1953 .

[3]  H. Edelhoch,et al.  Spectroscopic determination of tryptophan and tyrosine in proteins. , 1967, Biochemistry.

[4]  E. D. Kilbourne Future influenza vaccines and the use of genetic recombinants. , 1969, Bulletin of the World Health Organization.

[5]  R. Compans,et al.  Influenza virus structural and nonstructural proteins in infected cells and their plasma membranes. , 1971, Virology.

[6]  J. Skehel,et al.  Crystalline antigen from the influenza virus envelope. , 1972, Nature: New biology.

[7]  R. Hodges,et al.  Tropomyosin: Amino Acid Sequence and Coiled-Coil Structure , 1973 .

[8]  Y H Chen,et al.  Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. , 1974, Biochemistry.

[9]  P. Choppin,et al.  Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. , 1975, Virology.

[10]  A. Mclachlan,et al.  Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. , 1975, Journal of molecular biology.

[11]  J. Skehel,et al.  Studies on the primary structure of the influenza virus hemagglutinin. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[12]  H. Klenk,et al.  Activation of influenza A viruses by trypsin treatment. , 1975, Virology.

[13]  C. Ward,et al.  Influenza virus haemagglutinin. Structural predictions suggest that the fibrillar appearance is due to the presence of a coiled-coil. , 1980, Australian journal of biological sciences.

[14]  R. Hodges,et al.  Synthetic model for two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization of an 86-residue analog of tropomyosin. , 1981, The Journal of biological chemistry.

[15]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[16]  C. Bona,et al.  INFLUENZA VIRUS HEMAGGLUTININ , 1981 .

[17]  M L Johnson,et al.  Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. , 1981, Biophysical journal.

[18]  D. Parry Coiled-coils in α-helix-containing proteins: analysis of the residue types within the heptad repeat and the use of these data in the prediction of coiled-coils in other proteins , 1982, Bioscience reports.

[19]  M. Gething,et al.  Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion , 1982, Nature.

[20]  I. Wilson,et al.  Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Helenius,et al.  Membrane fusion activity of influenza virus. , 1982, The EMBO journal.

[22]  D. Wiley,et al.  Fusion mutants of the influenza virus hemagglutinin glycoprotein , 1985, Cell.

[23]  R. Doms,et al.  Membrane fusion activity of the influenza virus hemagglutinin. The low pH-induced conformational change. , 1985, The Journal of biological chemistry.

[24]  R. Woody Chapter 2 – Circular Dichroism of Peptides , 1985 .

[25]  J. Skehel,et al.  Studies of influenza haemagglutinin-mediated membrane fusion. , 1986, Virology.

[26]  J. Sambrook,et al.  Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport , 1986, Cell.

[27]  R. Webster,et al.  Assembly of influenza hemagglutinin trimers and its role in intracellular transport , 1986, The Journal of cell biology.

[28]  M. Gething,et al.  Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus , 1986, The Journal of cell biology.

[29]  J. Skehel,et al.  Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. , 1986, Virology.

[30]  R. Doms,et al.  Quaternary structure of influenza virus hemagglutinin after acid treatment , 1986, Journal of virology.

[31]  I. Wilson,et al.  Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin , 1987, The Journal of cell biology.

[32]  S. McKnight,et al.  The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. , 1988, Science.

[33]  J. Skehel,et al.  Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion. , 1988, The Journal of general virology.

[34]  P E Wright,et al.  Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. , 1988, Biochemistry.

[35]  S. Cusack,et al.  Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid , 1988, Nature.

[36]  P. S. Kim,et al.  Evidence that the leucine zipper is a coiled coil. , 1989, Science.

[37]  D. Parry,et al.  α‐Helical coiled coils and bundles: How to design an α‐helical protein , 1990 .

[38]  C. Pringle,et al.  Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. , 1990, The Journal of general virology.

[39]  P. S. Kim,et al.  Intermediates in the folding reactions of small proteins. , 1990, Annual review of biochemistry.

[40]  A. Leslie,et al.  Crystal structure of ovalbumin as a model for the reactive centre of serpins , 1990, Nature.

[41]  J. Skehel,et al.  Refinement of the influenza virus hemagglutinin by simulated annealing. , 1991, Journal of molecular biology.

[42]  A. Helenius,et al.  Intermediates in influenza induced membrane fusion. , 1990, The EMBO journal.

[43]  R. Doms,et al.  Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment , 1990, Journal of virology.

[44]  J. White,et al.  Viral and cellular membrane fusion proteins. , 1990, Annual review of physiology.

[45]  R. Huber,et al.  Crystal structure of plakalbumin, a proteolytically nicked form of ovalbumin. Its relationship to the structure of cleaved alpha-1-proteinase inhibitor. , 1990, Journal of molecular biology.

[46]  J. Skehel,et al.  The structure of a membrane fusion mutant of the influenza virus haemagglutinin. , 1990, The EMBO journal.

[47]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[48]  Y. Vaishnav,et al.  The biochemistry of AIDS. , 1991, Annual review of biochemistry.

[49]  J. Skehel,et al.  Ligand Recognition by Influenza Virus , 1991 .

[50]  F. Richards,et al.  The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. , 1991, The Journal of biological chemistry.

[51]  P. S. Kim,et al.  X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. , 1991, Science.

[52]  J. Knowles,et al.  Ligand recognition by influenza virus. The binding of bivalent sialosides. , 1991, The Journal of biological chemistry.

[53]  D. Lloyd,et al.  HBTU activation for automated Fmoc solid-phase peptide synthesis. , 1991, Peptide research.

[54]  P. S. Kim,et al.  Mechanism of specificity in the Fos-Jun oncoprotein heterodimer , 1992, Cell.

[55]  A. Helenius,et al.  Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum , 1992, Nature.

[56]  K. Struhl,et al.  The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α Helices: Crystal structure of the protein-DNA complex , 1992, Cell.

[57]  M B Eisen,et al.  Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[58]  I. Wilson,et al.  Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin , 1992, Journal of virology.

[59]  M. O'Donnell,et al.  The transmembrane glycoprotein of human immunodeficiency virus type 1 induces syncytium formation in the absence of the receptor binding glycoprotein , 1992, Journal of virology.

[60]  E. Goldsmith,et al.  Structural basis of latency in plasminogen activator inhibitor-1 , 1992, Nature.

[61]  J. Skehel,et al.  Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity , 1992, Cell.

[62]  T. Oas,et al.  A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Wiśniewski,et al.  Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. , 1993, Science.