Parameterization and identification of multivariable state-space systems: A canonical approach

In this paper, the problem of determining a canonical state-space representation for multivariable systems is revisited. A method is derived to build a canonical state-space representation directly from data generated by a linear time-invariant system. Contrary to the classic construction methods of canonical parameterizations, the technique developed in this paper does not assume the availability of any observability or controllability indices. However, it requires the A-matrix of any minimal realization of the system to be non-derogatory. A subspace-based identification algorithm is also introduced to estimate such a canonical state-space parameterization directly from input-output data.

[1]  Michel Verhaegen,et al.  Filtering and System Identification: Frontmatter , 2007 .

[2]  A. Chiuso,et al.  The asymptotic variance of subspace estimates , 2004 .

[3]  Stéphane Lecoeuche,et al.  Propagator-based methods for recursive subspace model identification , 2008, Signal Process..

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  Roberto Guidorzi Equivalence, invariance and dynamical system canonical modelling. I. Invariant properties of observable models and associated transformations , 1989, Kybernetika.

[6]  Marco Lovera,et al.  Bootstrap-based estimates of uncertainty in subspace identification methods , 2000, Autom..

[7]  D. Luenberger Canonical forms for linear multivariable systems , 1967, IEEE Transactions on Automatic Control.

[8]  B. De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[9]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[10]  Marco Lovera,et al.  CONVERGENCE ANALYSIS OF INSTRUMENTAL VARIABLE RECURSIVE SUBSPACE IDENTIFICATION ALGORITHMS , 2006 .

[11]  P.M.J. Van den Hof,et al.  Modeling and Identification of Linear Parameter-Varying Systems, an Orthonormal Basis Function Approach , 2004 .

[12]  Thomas Kailath,et al.  Linear Systems , 1980 .

[13]  D. Bauer Some asymptotic theory for the estimation of linear systems using maximum likelihood methods or subspace algorithms , 1998 .

[14]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[15]  Elie Tohme Initialization of output error identification algorithms , 2008 .

[16]  Lennart Ljung,et al.  System identification toolbox for use with MATLAB , 1988 .

[17]  Lennart Ljung,et al.  A statistical perspective on state-space modeling using subspace methods , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[18]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[19]  T. McKelvey Identification of State-Space Models from Time and Frequency Data , 1995 .

[20]  Tohru Katayama,et al.  Subspace Methods for System Identification , 2005 .

[21]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[22]  Hamid Krim,et al.  Two Decades of Array Signal Processing , 1997 .

[23]  M. Petreczky Realization theory of hybrid systems , 2006 .

[24]  V. Verdult,et al.  Filtering and System Identification: A Least Squares Approach , 2007 .

[25]  Daryl Pregibon,et al.  A statistical perspective on KDD , 1995, KDD 1995.

[26]  Roberto Guidorzi,et al.  Minimal representations of MIMO time-varying systems and realization of cyclostationary models , 2003, Autom..

[27]  Michel Verhaegen,et al.  Fast-array Recursive Closed-loop Subspace Model Identification , 2009 .

[28]  J. Willems,et al.  Parametrizations of linear dynamical systems: Canonical forms and identifiability , 1974 .

[29]  Roland Toth,et al.  Modeling and Identification of Linear Parameter-Varying Systems , 2010 .

[30]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[31]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[32]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[33]  Dietmar Bauer,et al.  Analysis of the asymptotic properties of the MOESP type of subspace algorithms , 2000, Autom..

[34]  Stéphane Lecoeuche,et al.  On-line structured subspace identification with application to switched linear systems , 2009, Int. J. Control.

[35]  René Vidal,et al.  Identification of Hybrid Systems: A Tutorial , 2007, Eur. J. Control.

[36]  M. Denham Canonical forms for the identification of multivariable linear systems , 1974 .

[37]  Gilles Y. Delisle,et al.  Spatial analysis using new properties of the cross-spectral matrix , 1991, IEEE Trans. Signal Process..

[38]  Lennart Ljung,et al.  Handling Certain Structure Information in Subspace Identification , 2009 .

[39]  L. Silverman,et al.  Transformation of time-variable systems to canonical (phase-variable) form , 1966 .