Grand canonical Monte Carlo simulation of the adsorption and separation of carbon dioxide and methane using functionalized Mg-MOF-74

[1]  H.J. Xu,et al.  Grand canonical Monte Carlo (GCMC) study on adsorption performance of metal organic frameworks (MOFs) for carbon capture , 2021, Sustainable Materials and Technologies.

[2]  X. Zhang,et al.  Porous metal–organic frameworks for methane storage and capture: status and challenges , 2021 .

[3]  Shujun Chen,et al.  Investigation of highly efficient adsorbent based on Ni-MOF-74 in the separation of CO2 from natural gas , 2021 .

[4]  Yeonhee L. Kim,et al.  Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework , 2021 .

[5]  S. Najafi Nobar,et al.  Investigation of the MOF adsorbents and the gas adsorptive separation mechanisms , 2020 .

[6]  Lei Zhang,et al.  Design strategies for MOF-derived porous functional materials: Preserving surfaces and nurturing pores , 2020 .

[7]  Kim Dan Nguyen,et al.  Series of M-MOF-184 (M = Mg, Co, Ni, Zn, Cu, Fe) Metal-Organic Frameworks for Catalysis Cycloaddition of CO2. , 2020, Inorganic chemistry.

[8]  Saeid Yeganegi,et al.  Computational study of the effect of functionalization on natural gas components separation and adsorption in NUM-3a MOF. , 2020, Journal of molecular graphics & modelling.

[9]  S. Deng,et al.  Comparative analysis of calculation method of adsorption isosteric heat: Case study of CO2 capture using MOFs , 2020, Microporous and Mesoporous Materials.

[10]  Hong Jiang,et al.  Topology-Based Functionalization of Robust Chiral Zr-Based Metal-Organic Frameworks for Catalytic Enantioselective Hydrogenation. , 2020, Journal of the American Chemical Society.

[11]  Huwei Liu,et al.  Sulfur-functionalized metal-organic frameworks: Synthesis and applications as advanced adsorbents , 2020 .

[12]  Chih-Wei Tsai,et al.  Computational study of ZIF-8 analogues with electron donating and withdrawing groups for CO2 adsorption , 2019, Microporous and Mesoporous Materials.

[13]  Dingxin Liu,et al.  The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives , 2019, Microporous and Mesoporous Materials.

[14]  O. Farha,et al.  Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs , 2019, Coordination Chemistry Reviews.

[15]  R. Boussessi,et al.  DFT studies of single and multiple molecular adsorption of CH4, SF6 and H2O in Zeolitic-Imidazolate Framework (ZIF-4 and ZIF-6) , 2019, Inorganica Chimica Acta.

[16]  C. Hong,et al.  Post-synthetic diamine-functionalization of MOF-74 type frameworks for effective carbon dioxide separation. , 2019, Dalton transactions.

[17]  V. Safarifard,et al.  Carbon dioxide capture in MOFs: The effect of ligand functionalization , 2018, Polyhedron.

[18]  Zhong Li,et al.  An Ultramicroporous Nickel-Based Metal–Organic Framework for Adsorption Separation of CO2 over N2 or CH4 , 2018, Energy & Fuels.

[19]  F. Rezaei,et al.  MOF-74 and UTSA-16 film growth on monolithic structures and their CO2 adsorption performance , 2017 .

[20]  T. A. Hatton,et al.  Postsynthetic Functionalization of Mg-MOF-74 with Tetraethylenepentamine: Structural Characterization and Enhanced CO2 Adsorption. , 2017, ACS applied materials & interfaces.

[21]  T. Vlugt,et al.  UvA-DARE ( Digital Academic Repository ) Polarizable Force Fields for CO 2 and CH 4 Adsorption in M-MOF-74 , 2017 .

[22]  Guangjin Chen,et al.  Capture of H2S and SO2 from trace sulfur containing gas mixture by functionalized UiO-66(Zr) materials: A molecular simulation study , 2016 .

[23]  Yuanjing Cui,et al.  Emerging Multifunctional Metal–Organic Framework Materials , 2016, Advanced materials.

[24]  A. J. Blake,et al.  Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal–Organic Framework , 2016, Journal of the American Chemical Society.

[25]  Jing Ding,et al.  Experimental and computational investigation of CO2 capture on amine grafted metal-organic framework NH2-MIL-101 , 2016 .

[26]  G. Urban,et al.  Carbon dioxide gas detection by open metal site metal organic frameworks and surface functionalized metal organic frameworks , 2016 .

[27]  P. Webley,et al.  Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs , 2015 .

[28]  A. Huang,et al.  Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H-2/CO2 separation , 2015 .

[29]  B. Smit,et al.  Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design , 2015 .

[30]  Michael James,et al.  Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) , 2014 .

[31]  P. Xu,et al.  Microgravimetric thermodynamic modeling for optimization of chemical sensing nanomaterials. , 2014, Analytical chemistry.

[32]  Mietek Jaroniec,et al.  Force field for ZIF-8 flexible frameworks: atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO2 and N2 , 2014 .

[33]  B. Smit,et al.  Understanding Trends in CO2 Adsorption in Metal-Organic Frameworks with Open-Metal Sites. , 2014, The journal of physical chemistry letters.

[34]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[35]  A. Yazaydin,et al.  A combined experimental and quantum chemical study of CO2 adsorption in the metal–organic framework CPO-27 with different metals , 2013 .

[36]  D. Vos,et al.  Selective Dynamic CO2 Separations on Mg-MOF-74 at Low Pressures: A Detailed Comparison with 13X , 2013 .

[37]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[38]  P. Feng,et al.  Single-walled polytetrazolate metal-organic channels with high density of open nitrogen-donor sites and gas uptake. , 2012, Journal of the American Chemical Society.

[39]  Randall Q Snurr,et al.  Development and evaluation of porous materials for carbon dioxide separation and capture. , 2011, Angewandte Chemie.

[40]  W. Zhou,et al.  Carbon capture in metal–organic frameworks—a comparative study , 2011 .

[41]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[42]  Chongli Zhong,et al.  A General Approach for Estimating Framework Charges in Metal−Organic Frameworks , 2010 .

[43]  A. Simon‐Masseron,et al.  Adsorption of CO(2), CH(4), and N(2) on zeolitic imidazolate frameworks: experiments and simulations. , 2010, Chemistry.

[44]  Jianguo Mi,et al.  Li-modified metal–organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity , 2010 .

[45]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[46]  Richard Blom,et al.  Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide , 2009 .

[47]  Wei Zhou,et al.  High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. , 2009, Journal of the American Chemical Society.

[48]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[49]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[50]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[51]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[52]  Kenneth B. Wiberg,et al.  Comparison of atomic charges derived via different procedures , 1993, J. Comput. Chem..

[53]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[54]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[55]  Jon Baker,et al.  Geometry optimization in Cartesian coordinates: Constrained optimization , 1992 .

[56]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[57]  Chen Feiwu,et al.  Comparison of Computational Methods for Atomic Charges , 2012 .

[58]  D. J. Adams,et al.  Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid , 1975 .