Influence of wheel speed on surface finish and chip geometry in precision contour grinding

Abstract A geometric computer model of a precision grinding operation was developed to calculate the surface features generated during contour grinding with a radiused wheel. This simulation includes the influence of the wheel (rotational speed, diameter, and nose radius), the workpiece (radius at cutting point, rotational speed), and the feedrate of the grinding wheel over the part. The model indicates that small changes in the wheel speed relative to the workpiece can have a dramatic effect on the surface finish over a specific area. Analysis of ground surfaces reveals uniform surface profiles and easily distinguished features that could only be produced by a constant wheel speed. This occurs for an air-bearing, air-turbude grinding spindle that has limited torque and is driven under open-loop control. The effects of the relative speeds are analyzed and an energy-based “phase locking” mechanism is proposed that can provide feedback to the grinding spindle from the material removal operation. By monitoring the spindle speeds during the grinding process and evaluating the resulting surface features, the phase effect has been experimentally verified.