Multiresolution modeling with operator-customized wavelets derived from finite elements
暂无分享,去创建一个
[1] R. Melosh. BASIS FOR DERIVATION OF MATRICES FOR THE DIRECT STIFFNESS METHOD , 1963 .
[2] Clive L. Dym,et al. Energy and Finite Element Methods In Structural Mechanics : SI Units , 2017 .
[3] Harry Yserentant,et al. Hierarchical bases , 1992 .
[4] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[5] Gilbert Strang,et al. Finite element multiwavelets , 1994, Optics & Photonics.
[6] Sankatha Prasad Singh,et al. Approximation Theory, Wavelets and Applications , 1995 .
[7] K. Bathe. Finite Element Procedures , 1995 .
[8] Wim Sweldens,et al. The lifting scheme: a construction of second generation wavelets , 1998 .
[9] Wolfgang Dahmen,et al. Local Decomposition of Refinable Spaces and Wavelets , 1996 .
[10] Truong Q. Nguyen,et al. Wavelets and filter banks , 1996 .
[11] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997 .
[12] Richard M. Beam,et al. Discrete Multiresolution Analysis Using Hermite Interpolation: Biorthogonal Multiwavelets , 2000, SIAM J. Sci. Comput..
[13] Kevin Amaratunga,et al. Surface wavelets: a multiresolution signal processing tool for 3D computational modelling , 2001 .
[14] Kevin Amaratunga,et al. Spatially Adapted Multiwavelets and Sparse Representation of Integral Equations on General Geometries , 2002, SIAM J. Sci. Comput..
[15] Kevin Amaratunga,et al. Generalized hierarchical bases: a Wavelet‐Ritz‐Galerkin framework for Lagrangian FEM , 2005 .