Multiresolution modeling with operator-customized wavelets derived from finite elements

[1]  R. Melosh BASIS FOR DERIVATION OF MATRICES FOR THE DIRECT STIFFNESS METHOD , 1963 .

[2]  Clive L. Dym,et al.  Energy and Finite Element Methods In Structural Mechanics : SI Units , 2017 .

[3]  Harry Yserentant,et al.  Hierarchical bases , 1992 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Gilbert Strang,et al.  Finite element multiwavelets , 1994, Optics & Photonics.

[6]  Sankatha Prasad Singh,et al.  Approximation Theory, Wavelets and Applications , 1995 .

[7]  K. Bathe Finite Element Procedures , 1995 .

[8]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[9]  Wolfgang Dahmen,et al.  Local Decomposition of Refinable Spaces and Wavelets , 1996 .

[10]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[11]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997 .

[12]  Richard M. Beam,et al.  Discrete Multiresolution Analysis Using Hermite Interpolation: Biorthogonal Multiwavelets , 2000, SIAM J. Sci. Comput..

[13]  Kevin Amaratunga,et al.  Surface wavelets: a multiresolution signal processing tool for 3D computational modelling , 2001 .

[14]  Kevin Amaratunga,et al.  Spatially Adapted Multiwavelets and Sparse Representation of Integral Equations on General Geometries , 2002, SIAM J. Sci. Comput..

[15]  Kevin Amaratunga,et al.  Generalized hierarchical bases: a Wavelet‐Ritz‐Galerkin framework for Lagrangian FEM , 2005 .