Biosynthesis of streptolidine involved two unexpected intermediates produced by a dihydroxylase and a cyclase through unusual mechanisms.

Streptothricin-F (STT-F), one of the early-discovered antibiotics, consists of three components, a β-lysine homopolymer, an aminosugar D-gulosamine, and an unusual bicyclic streptolidine. The biosynthesis of streptolidine is a long-lasting but unresolved puzzle. Herein, a combination of genetic/biochemical/structural approaches was used to unravel this problem. The STT gene cluster was first sequenced from a Streptomyces variant BCRC 12163, wherein two gene products OrfP and OrfR were characterized in vitro to be a dihydroxylase and a cyclase, respectively. Thirteen high-resolution crystal structures for both enzymes in different reaction intermediate states were snapshotted to help elucidate their catalytic mechanisms. OrfP catalyzes an Fe(II) -dependent double hydroxylation reaction converting L-Arg into (3R,4R)-(OH)2 -L-Arg via (3S)-OH-L-Arg, while OrfR catalyzes an unusual PLP-dependent elimination/addition reaction cyclizing (3R,4R)-(OH)2 -L-Arg to the six-membered (4R)-OH-capreomycidine. The biosynthetic mystery finally comes to light as the latter product was incorporation into STT-F by a feeding experiment.

[1]  Wei Huang,et al.  Mining of a streptothricin gene cluster from Streptomyces sp. TP-A0356 genome via heterologous expression , 2013, Science China Life Sciences.

[2]  Xudong Zheng,et al.  Three new 12-carbamoylated streptothricins from Streptomyces sp. I08A 1776. , 2012, Bioorganic & medicinal chemistry letters.

[3]  K. Shin‐ya,et al.  A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis. , 2012, Nature chemical biology.

[4]  P. Fernandes,et al.  Mechanism of formation of the internal aldimine in pyridoxal 5'-phosphate-dependent enzymes. , 2011, Journal of the American Chemical Society.

[5]  Liyan Yu,et al.  Streptothricin derivatives from Streptomyces sp. I08A 1776. , 2011, Journal of natural products.

[6]  M. Marahiel,et al.  Structural basis for the erythro‐stereospecificity of the l‐arginine oxygenase VioC in viomycin biosynthesis , 2009, The FEBS journal.

[7]  E. Kovaleva,et al.  Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. , 2008, Nature chemical biology.

[8]  J. Vandenhaute,et al.  Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe , 2005, Yeast.

[9]  Junqing Shen,et al.  CaNAT1, a Heterologous Dominant Selectable Marker for Transformation of Candida albicans and Other Pathogenic Candida Species , 2005, Infection and Immunity.

[10]  B. Shen,et al.  Conversion of (2S)‐Arginine to (2S,3R)‐Capreomycidine by VioC and VioD from the Viomycin Biosynthetic Pathway of Streptomyces sp. Strain ATCC11861 , 2004, Chembiochem : a European journal of chemical biology.

[11]  T. Zabriskie,et al.  VioC is a Non‐Heme Iron, α‐Ketoglutarate‐Dependent Oxygenase that Catalyzes the Formation of 3S‐Hydroxy‐L‐Arginine during Viomycin Biosynthesis , 2004, Chembiochem : a European journal of chemical biology.

[12]  K. McPhail,et al.  Formation of the Nonproteinogenic Amino Acid 2S,3R‐Capreomycidine by VioD from the Viomycin Biosynthesis Pathway , 2004, Chembiochem : a European journal of chemical biology.

[13]  J. Heitman,et al.  Cryptococcus neoformans Virulence Gene Discovery through Insertional Mutagenesis , 2004, Eukaryotic Cell.

[14]  Jack F Kirsch,et al.  Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. , 2003, Annual review of biochemistry.

[15]  M. J. Ryle,et al.  Non-heme iron oxygenases. , 2002, Current opinion in chemical biology.

[16]  S. Gould,et al.  Studies on the formation and incorporation of streptolidine in the biosynthesis of the peptidyl nucleoside antibiotic streptothricin F. , 2002, The Journal of organic chemistry.

[17]  J. Mccusker,et al.  Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae , 1999, Yeast.

[18]  C. Vallín,et al.  Streptothricin biosynthesis is catalyzed by enzymes related to nonribosomal peptide bond formation , 1997, Journal of bacteriology.

[19]  W. McMaster,et al.  The gene encoding streptothricin acetyltransferase (sat) as a selectable marker for Leishmania expression vectors. , 1995, Gene.

[20]  J. Wityak,et al.  Biosynthesis of streptothricin F , 1991 .

[21]  S. Gould,et al.  Biosynthesis of streptothricin F. 5. Formation of .beta.-lysine by Streptomyces L-1689-23 , 1983 .

[22]  S. Imaoka,et al.  Total chemical structure of streptothricin. , 1982, The Journal of antibiotics.

[23]  S. Gould,et al.  Studies of nitrogen metabolism using /sup 13/C NMR spectroscopy. 3. Synthesis of DL-(3-/sup 13/C,2-/sup 15/N)Lysine and its incorporation into streptothricin F/sup 1/ , 1981 .

[24]  S. Gould,et al.  Studies of nitrogen metabolism using carbon-13 NMR spectroscopy. 2. Incorporation of L-[guanido-13C,15N2]arginine and DL-[guanido-13C,2-15N]arginine into streptothricin F , 1981 .

[25]  S. Gould,et al.  Biosynthesis of streptothricin F. 1. Observing the interaction of primary and secondary metabolism with [1,2-13C2]acetate , 1981 .

[26]  J. Jonák,et al.  Action of streptothricin F on ribosomal functions. , 1980, The Journal of antibiotics.

[27]  I. Haupt,et al.  Streptothricin F, an inhibitor of protein synthesis with miscoding activity. , 1978, The Journal of antibiotics.

[28]  K. Arima,et al.  Taeniacidal activity of streptothricin antibiotic complex S15-1 (SQ 21,704). , 1977, The Journal of antibiotics.

[29]  Herbert E. Carter,et al.  STREPTOTHRICIN AND STREPTOLIN: THE STRUCTURE OF STREPTOLIDINE (ROSEONINE) , 1961 .

[30]  S. Waksman Production and Activity of Streptothricin , 1943, Journal of bacteriology.

[31]  S. Gould,et al.  Biosynthesis of streptothricin F. Part 6. Formation and intermediacy of D-glucosamine in Streptomyces L-1689-23 , 1988 .

[32]  S. Gould,et al.  The biosynthesis of the streptolidine moiety in streptothricin F , 1983 .

[33]  T. King,et al.  Crystal structure of streptolidine, a guanidine-containing amino-acid , 1972 .