Highly textured boron/nitrogen co-doped TiO2 with honeycomb structure showing enhanced visible-light photoelectrocatalytic activity

[1]  H. Horst,et al.  PRESSURE , 2020, Storying Relationships.

[2]  I. Iatsunskyi,et al.  Enhanced electrocatalytic performance triggered by atomically bridged boron nitride between palladium nanoparticles and carbon fibers in gas-diffusion electrodes , 2019, Applied Catalysis B: Environmental.

[3]  R. Viter,et al.  BN/GdxTi(1-x)O(4-x)/2 nanofibers for enhanced photocatalytic hydrogen production under visible light , 2019, Applied Catalysis B: Environmental.

[4]  Andrea Merenda,et al.  Fabrication of Pd-TiO2 nanotube photoactive junctions via Atomic Layer Deposition for persistent pesticide pollutants degradation , 2019, Applied Surface Science.

[5]  M. Bechelany,et al.  Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS2 Nanosheets toward the Evolution of Hydrogen. , 2019, ACS nano.

[6]  A. Farghali,et al.  Au-decorated 3D/1D titanium dioxide flower-like/rod bilayers for photoelectrochemical water oxidation , 2019, Electrochimica Acta.

[7]  W. E. El Rouby,et al.  A comparison of water photo-oxidation and photo-reduction using photoelectrodes surface-modified by deposition of co-catalysts: Insights from photo-electrochemical impedance spectroscopy , 2019, International Journal of Hydrogen Energy.

[8]  I. Iatsunskyi,et al.  Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires , 2019, Journal of Materials Chemistry A.

[9]  Ritesh Kumar,et al.  Tuning the electronic band alignment properties of TiO2 nanotubes by boron doping , 2019, Results in Physics.

[10]  A. Kudo,et al.  Water reduction into hydrogen using Rh-doped SrTiO3 photoelectrodes surface-modified by minute amounts of Pt: Insights from heterogeneous kinetic analysis , 2019, Electrochimica Acta.

[11]  S. Maken,et al.  Non-metal modified TiO2: a step towards visible light photocatalysis , 2019, Journal of Materials Science: Materials in Electronics.

[12]  J. Zhong,et al.  Photocharged Fe2TiO5/Fe2O3 Photoanode for Enhanced Photoelectrochemical Water Oxidation , 2018, The Journal of Physical Chemistry C.

[13]  Nageh K. Allam,et al.  Non-precious co-catalysts boost the performance of TiO2 hierarchical hollow mesoporous spheres in solar fuel cells , 2018, International Journal of Hydrogen Energy.

[14]  H. El-Maghrabi,et al.  Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation , 2018, Journal of Photochemistry and Photobiology A: Chemistry.

[15]  A. Farghali,et al.  Titania morphologies modified gold nanoparticles for highly catalytic photoelectrochemical water splitting , 2018, Journal of Photochemistry and Photobiology A: Chemistry.

[16]  Xiangjin Kong,et al.  Role of dopant Ga in tuning the band gap of rutile TiO2 from first principles , 2018, Chinese Journal of Physics.

[17]  C. Haisch,et al.  Irreversible surface changes upon n-type doping – A photoelectrochemical study on rutile single crystals , 2018, Electrochimica Acta.

[18]  W. E. El Rouby Selective adsorption and degradation of organic pollutants over Au decorated Co doped titanate nanotubes under simulated solar light irradiation , 2018, Journal of the Taiwan Institute of Chemical Engineers.

[19]  E. Safaei,et al.  Selective aerobic photocatalytic oxidation of benzyl alcohol over spherical structured WO3/TiO2 nanocomposite under visible light irradiation , 2018, Journal of Sol-Gel Science and Technology.

[20]  Zhifeng Liu,et al.  Flake-like NiO/WO 3 p-n heterojunction photocathode for photoelectrochemical water splitting , 2018 .

[21]  A. Farghali,et al.  S-TiO 2 /S-reduced graphene oxide for enhanced photoelectrochemical water splitting , 2018 .

[22]  H. El-Maghrabi,et al.  Synthesis of mesoporous core-shell CdS@TiO 2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production , 2018 .

[23]  W. E. Rouby,et al.  Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting , 2017 .

[24]  Y. Voloshin,et al.  Characterization of Rh:SrTiO3 photoelectrodes surface-modified with a cobalt clathrochelate and their application to the hydrogen evolution reaction , 2017 .

[25]  Yugang Sun,et al.  A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting , 2017 .

[26]  R. Viter,et al.  Mesoporous ZnFe2O4@TiO2 Nanofibers Prepared by Electrospinning Coupled to PECVD as Highly Performing Photocatalytic Materials , 2017 .

[27]  I. Iatsunskyi,et al.  Mechanical properties of boron nitride thin films prepared by atomic layer deposition , 2017 .

[28]  A. Moshaii,et al.  Improving photo-stability and charge transport properties of Cu 2 O/CuO for photo-electrochemical water splitting using alternate layers of WO 3 or CuWO 4 produced by the same route , 2017 .

[29]  A. Regoutz,et al.  Effects of low temperature annealing on the photo-electrochemical performance of tin-doped hematite photo-anodes , 2017 .

[30]  Chuncheng Chen,et al.  Facial boron incorporation in hematite photoanode for enhanced photoelectrochemical water oxidation , 2017 .

[31]  Thomas W. Hamann,et al.  Interface Control of Photoelectrochemical Water Oxidation Performance with Ni1–xFexOy Modified Hematite Photoanodes , 2017 .

[32]  A. Mendes,et al.  Hematite-based photoelectrode for solar water splitting with very high photovoltage , 2017 .

[33]  Sung Yul Lim,et al.  Photoelectrochemical and Impedance Spectroscopic Analysis of Amorphous Si for Light-Guided Electrodeposition and Hydrogen Evolution Reaction. , 2017, ACS applied materials & interfaces.

[34]  Yuqi Cui,et al.  Fabrication of Ag2O/TiO2-Zeolite composite and its enhanced solar light photocatalytic performance and mechanism for degradation of norfloxacin , 2017 .

[35]  H. El-Maghrabi,et al.  One pot environmental friendly nanocomposite synthesis of novel TiO2-nanotubes on graphene sheets as effective photocatalyst , 2016 .

[36]  D. Kanjilal,et al.  Optical studies of cobalt implanted rutile TiO2 (110) surfaces , 2016 .

[37]  N. Russo,et al.  Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis , 2016 .

[38]  Yau-Chen Jiang,et al.  Floating photocatalyst of B–N–TiO2/expanded perlite: a sol–gel synthesis with optimized mesoporous and high photocatalytic activity , 2016, Scientific Reports.

[39]  Jiaguo Yu,et al.  Highly efficient TiO2 single-crystal photocatalyst with spatially separated Ag and F− bi-cocatalysts: orientation transfer of photogenerated charges and their rapid interfacial reaction , 2016 .

[40]  Mohammad Mansoob Khan,et al.  Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis , 2016 .

[41]  Thomas W. Hamann,et al.  Enhanced Charge Separation and Collection in High-Performance Electrodeposited Hematite Films , 2016 .

[42]  Jong-Ho Lee,et al.  Photocatalytic characteristics of boron and nitrogen doped titania film synthesized by micro-arc oxidation , 2015 .

[43]  Xuejiang Wang,et al.  Synthesis, structural characterization and evaluation of floating B-N codoped TiO2/expanded perlite composites with enhanced visible light photoactivity , 2015 .

[44]  K. Lu,et al.  A Novel Method To Prepare B/N Codoped Anatase TiO2 , 2015 .

[45]  Hong Chen,et al.  Growth of the [110] Oriented TiO2 Nanorods on ITO Substrates by Sputtering Technique for Dye-Sensitized Solar Cells , 2014, Front. Mater..

[46]  Xiaoxia Lin,et al.  Facile one-pot hydrothermal synthesis of B/N-codoped TiO2 hollow spheres with enhanced visible-light photocatalytic activity and photoelectrochemical property , 2014 .

[47]  Kui Zhang,et al.  Preparation and photocatalytic activity of B–N co-doped mesoporous TiO2 , 2014 .

[48]  B. Bartlett,et al.  Reactivity of CuWO4 in Photoelectrochemical Water Oxidation Is Dictated by a Midgap Electronic State , 2013 .

[49]  Stefan Vajda,et al.  Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. , 2013, ACS nano.

[50]  Guoping Xu,et al.  Photocurrent enhancement for Ti-doped Fe₂O₃ thin film photoanodes by an in situ solid-state reaction method. , 2013, ACS applied materials & interfaces.

[51]  Hao Yu,et al.  Boron and nitrogen-codoped TiO 2 nanorods: Synthesis, characterization, and photoelectrochemical properties , 2011 .

[52]  Jianjun Yang,et al.  Photoelectrochemical and photocatalytic properties of N + S co-doped TiO2 nanotube array films under visible light irradiation , 2011, 1107.4411.

[53]  Lizhi Zhang,et al.  Efficient visible light driven photocatalytic removal of NO with aerosol flow synthesized B, N-codoped TiO2 hollow spheres. , 2011, Journal of hazardous materials.

[54]  Wensheng Yang,et al.  Doping mode, band structure and photocatalytic mechanism of B–N-codoped TiO2 , 2011 .

[55]  F. Fabregat‐Santiago,et al.  Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[56]  M. Xing,et al.  Formation of New Structures and Their Synergistic Effects in Boron and Nitrogen Codoped TiO2 for Enhancement of Photocatalytic Performance , 2011 .

[57]  Hao Yu,et al.  Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances , 2011 .

[58]  E. Kartini,et al.  Crystallite Size and Microstrain Measurement of Cathode Material after Mechanical Milling using Neutron Diffraction Technique , 2010 .

[59]  R. Egdell,et al.  Nitrogen diffusion in doped TiO2 (110) single crystals: a combined XPS and SIMS study , 2009 .

[60]  E. Zolotoyabko,et al.  Determination of the degree of preferred orientation within the March–Dollase approach , 2009 .

[61]  Yuexiang Li,et al.  Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution , 2008 .

[62]  Na Lu,et al.  Facile Method for Fabricating Boron-Doped TiO2 Nanotube Array with Enhanced Photoelectrocatalytic Properties , 2008 .

[63]  D. Barreca,et al.  TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications , 2007 .

[64]  Guohua Chen,et al.  Fabrication of Boron-Doped TiO2 Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability , 2007 .

[65]  C. Domain,et al.  Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations , 2007 .

[66]  C. Cao,et al.  Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. , 2005, The journal of physical chemistry. B.

[67]  M. Inagaki,et al.  New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2 , 2004 .

[68]  Claes-Göran Granqvist,et al.  Photoelectrochemical Study of Nitrogen-Doped Titanium Dioxide for Water Oxidation , 2004 .

[69]  Oliver Diwald,et al.  Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light , 2004 .

[70]  M. Mazúr,et al.  Investigations of metal-doped titanium dioxide photocatalysts , 2002 .

[71]  C. Thompson Structure Evolution During Processing of Polycrystalline Films , 2000 .

[72]  R. Egdell,et al.  The surface structure of TiO2(210) studied by atomically resolved STM and atomistic simulation , 2000 .

[73]  D. Fermín,et al.  A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy , 1999 .

[74]  T. Hirata Pressure, Temperature and Concentration Dependences of Phonon Frequency with Variable Grüneisen Parameter: Fits to the Raman-Active Eg Mode in TiO2 and Ti1—xZrxO2 (x ≤ 0.1) , 1998 .

[75]  A. Jephcoat,et al.  A correction for powder diffraction peak asymmetry due to axial divergence , 1994 .

[76]  W. A. Dollase,et al.  Correction of intensities for preferred orientation in powder diffractometry: application of the March model , 1986 .

[77]  L. Peter,et al.  Photoelectrochemical water splitting : materials, processes and architectures , 2013 .

[78]  Hao Yu,et al.  Effect of nitrogen-doping temperature on the structure and photocatalytic activity of the B,N-doped TiO2 , 2011 .

[79]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[80]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .