In vivo cytometry: A spectrum of possibilities

We investigate whether optical imaging can reliably detect abnormalities in tissue, in a range of specimens (live cells in vitro; fixed, fresh ex‐vivo and in vivo tissue), without the use of added contrast agents, and review our promising spectral methods for achieving quantitative, real‐time, high resolution intrasurgical optical diagnostics.

[1]  J. Mourant,et al.  Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. , 1997, Physics in medicine and biology.

[2]  D L Farkas,et al.  Detection of tumorigenesis in rat bladders with optical coherence tomography. , 2001, Medical physics.

[3]  Katsuei Shibuki,et al.  Dynamic Imaging of Somatosensory Cortical activity in the Rat Visualized by Flavoprotein Autofluorescence , 2003, The Journal of physiology.

[4]  B. Mayinger,et al.  Endoscopic light-induced autofluorescence spectroscopy for the diagnosis of colorectal cancer and adenoma. , 2003, Journal of photochemistry and photobiology. B, Biology.

[5]  D L Farkas,et al.  Tumor Detection and Visualization Using Cyanine Fluorochrome‐Labeled Antibodies , 1997, Biotechnology progress.

[6]  Daniel L. Farkas,et al.  Spectral Microscopy for Quantitative Cell and Tissue Imaging , 2001 .

[7]  J. Fujimoto Optical coherence tomography for ultrahigh resolution in vivo imaging , 2003, Nature Biotechnology.

[8]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[9]  D L Farkas,et al.  Applications of spectral imaging: detection and analysis of human melanoma and its precursors. , 2001, Pigment cell research.

[10]  M Quarto,et al.  MS‐2 fibrosarcoma characterization by laser induced autofluorescence , 2000, Lasers in surgery and medicine.

[11]  Sebastian Wachsmann-Hogiu,et al.  Advanced optical imaging requiring no contrast agents--a new armamentarium for medicine and surgery. , 2005, Current surgery.

[12]  Nirmala Ramanujam,et al.  Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues , 2004, Annals of Surgical Oncology.

[13]  Daniel L. Farkas,et al.  The hyperspectral imaging endoscope: a new tool for in vivo cancer detection , 2004, SPIE BiOS.

[14]  D L Farkas,et al.  Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope. , 1997, Biophysical journal.

[15]  K. Badizadegan,et al.  Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus. , 2001, Gastroenterology.

[16]  H. Tajiri,et al.  Detection of early gastric cancer by a real-time autofluorescence imaging system. , 2001, Cancer letters.

[17]  W Lohmann,et al.  Significance of autofluorescence for the optical demarcation of field cancerisation in the upper aerodigestive tract. , 1997, Acta oto-laryngologica.

[18]  Haishan Zeng,et al.  Real‐time endoscopic fluorescence imaging for early cancer detection in the gastrointestinal tract , 1998 .

[19]  M. Manfait,et al.  Autofluorescence spectroscopy of malpighian epithelial cells, as a new tool for analysis of cervical cancer precursors. , 2003, Histology and histopathology.

[20]  R. Dasari,et al.  Prospects for in vivo Raman spectroscopy , 2000 .