Ultrafine high performance polyethylene fibers

Stiff, strong and tough ultrafine polyethylene fibers that rival the best high performance fibers, but with diameters less than one micron, are fabricated for the first time by “gel-electrospinning.” In this process, solution concentration and process temperatures are chosen to induce the formation of gel filaments “in flight,” which are subsequently drawn at high rates as a consequence of the whipping instability. The resulting submicron-diameter fibers exhibited Young’s moduli of 73 ± 13 GPa, yield strengths of 3.5 ± 0.6 GPa, and toughnesses of 1.8 ± 0.3 GPa, on average. Among the smallest fibers examined, one with a diameter of 490 ± 50 nm showed a Young’s modulus of 110 ± 16 GPa, ultimate tensile strength of 6.3 ± 0.9 GPa, and toughness of 2.1 ± 0.3 GPa, a combination of mechanical properties that is unparalleled among polymer fibers to date. The correlation of stiffness, strength and toughness with fiber diameter is attributed to high crystallinity and crystallite orientation, combined with fewer defects and enhanced chain slip associated with small diameter and high specific surface area. Gel-electrospinning improves the prospects for production of such fibers at scale.

[1]  D. Demco,et al.  Morphology, Chain Dynamics, and Domain Sizes in Highly Drawn Gel-Spun Ultrahigh Molecular Weight Polyethylene Fibers at the Final Stages of Drawing by SAXS, WAXS, and 1H Solid-State NMR , 2011 .

[2]  L. Larrondo,et al.  Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties , 1981 .

[3]  A. Pennings,et al.  DSC experiments on gel-spun polyethylene fibers , 1988 .

[4]  Shing Chung Josh Wong,et al.  Effect of fiber diameter on tensile properties of electrospun poly(ɛ-caprolactone) , 2008 .

[5]  Yi Cui,et al.  Transparent air filter for high-efficiency PM2.5 capture , 2015, Nature Communications.

[6]  Mary C. Boyce,et al.  Mechanical properties of individual electrospun PA 6(3)T fibers and their variation with fiber diameter , 2011 .

[7]  P. J. Lemstra,et al.  Production and properties of high-modulus and high-strength polyethylene fibres , 2009 .

[8]  Eyal Zussman,et al.  Electrospinning of ultrahigh‐molecular‐weight polyethylene nanofibers , 2007 .

[9]  N. Pugno,et al.  Electrospinning of p‐Aramid Fibers , 2015 .

[10]  A. Mikos,et al.  Electrospinning of polymeric nanofibers for tissue engineering applications: a review. , 2006, Tissue engineering.

[11]  Zhigang Xie,et al.  Electrospinning of polymeric nanofibers for drug delivery applications. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[12]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[13]  Michael P. Brenner,et al.  Electrospinning: A whipping fluid jet generates submicron polymer fibers , 2001 .

[14]  John F. Rabolt,et al.  High-Temperature Electrospinning of Polyethylene Microfibers from Solution , 2007 .

[15]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[16]  A. Hirata,et al.  In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit , 2013, Nature Communications.

[17]  J. Rumble CRC Handbook of Chemistry and Physics , 2019 .

[18]  Bin Ding,et al.  Electrospun nanomaterials for ultrasensitive sensors , 2010, Materials Today.

[19]  J. Williams,et al.  Applications of linear fracture mechanics , 1978 .

[20]  P. J. Lemstra,et al.  Ultra-high-strength polyethylene filaments by solution spinning/drawing , 1980 .

[21]  Application of gentle annular gas veil for electrospinning of polymer solutions and melts , 2009 .

[22]  Younan Xia,et al.  Electrospun Nanofibers for Regenerative Medicine , 2012, Advanced healthcare materials.

[23]  T. Hashimoto,et al.  Effects of spinning conditions on the mechanical properties of ultrahigh‐molecular‐weight polyethylene fibers , 2005 .

[24]  C. Lim,et al.  Mechanical properties of single electrospun drug-encapsulated nanofibres , 2006, Nanotechnology.

[25]  A. J. Pennings,et al.  The fracture process of ultra-high strength polyethylene fibres , 1984 .

[26]  Seeram Ramakrishna,et al.  Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. , 2008, Biomaterials.

[27]  T. Peijs,et al.  High Strength and High Modulus Electrospun Nanofibers , 2014 .

[28]  Oleg Gendelman,et al.  Effect of supramolecular structure on polymer nanofibre elasticity. , 2007, Nature nanotechnology.

[29]  Seeram Ramakrishna,et al.  Electrospun nanofibrous filtration membrane , 2006 .

[30]  A. Greiner,et al.  Highly Oriented Crystalline PE Nanofibrils Produced by Electric-Field-Induced Stretching of Electrospun Wet Fibers , 2010 .

[31]  Y. Cohen,et al.  Elaboration of Ultra-High Molecular Weight Polyethylene/Carbon Nanotubes Electrospun Composite Fibers , 2010 .

[32]  R. de Borst,et al.  Application of linear and nonlinear fracture mechanics options to free edge delamination in laminated composites , 1991 .

[33]  G. Rutledge,et al.  50th Anniversary Perspective: Advanced Polymer Fibers: High Performance and Ultrafine , 2017 .

[34]  A. Keller,et al.  Thermal contraction and extension in fibrous crystals of polyethylene , 1978 .

[35]  M. Boyce,et al.  On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes , 2011 .

[36]  Jayant Kumar,et al.  Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors , 2002 .

[37]  D. Lacks,et al.  Simulation of the temperature dependence of mechanical properties of polyethylene , 1994 .

[38]  Yan Yu,et al.  Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries , 2008 .

[39]  Darrell H. Reneker,et al.  Electrospinning of Nanofibers from Polymer Solutions and Melts , 2007 .

[40]  Michael P Brenner,et al.  Controlling the fiber diameter during electrospinning. , 2003, Physical review letters.

[41]  T. A. Hatton,et al.  Aerosol filtration using electrospun cellulose acetate fibers , 2015, Journal of Materials Science.

[42]  G. McKinley,et al.  FILAMENT-STRETCHING RHEOMETRY OF COMPLEX FLUIDS , 2002 .

[43]  J. Lou,et al.  Fracture of Sub‐20nm Ultrathin Gold Nanowires , 2011 .

[44]  Yong Jung Kim,et al.  Fabrication of Electrospinning‐Derived Carbon Nanofiber Webs for the Anode Material of Lithium‐Ion Secondary Batteries , 2006 .

[45]  N. Pugno,et al.  High-performance electrospun co-polyimide nanofibers , 2015 .

[46]  Devotha Nyambo,et al.  Applications: A Review , 2014 .

[47]  M. Robbins,et al.  Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers , 2016 .

[48]  L. Larrondo,et al.  Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt , 1981 .

[49]  A. McGaughey,et al.  Crystalline Polyethylene Nanofibers with the Theoretical Limit of Young's Modulus , 2014, Advanced materials.

[50]  N. Finn Types of smart materials for protection , 2013 .

[51]  Shiliang Wang,et al.  The Mechanical Properties of Nanowires , 2017, Advanced science.

[52]  R. Dersch,et al.  Orientation analysis of individual electrospun PE nanofibers by transmission electron microscopy , 2010 .

[53]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[54]  J. Coleman,et al.  Mechanical properties of individual electrospun polymer-nanotube composite nanofibers , 2009 .

[55]  C. Bastiaansen Tensile strength of solution-spun, ultra-drawn ultra-high molecular weight polyethylene fibres: 1. Influence of fibre diameter , 1992 .

[56]  J. Rieger,et al.  Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: Scanning synchrotron small- and wide-angle X-ray scattering studies , 2009 .

[57]  H. Wagner,et al.  Stiffness, Strength, and Toughness of Electrospun Nanofibers: Effect of Flow-Induced Molecular Orientation , 2016 .

[58]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[59]  Han Gi Chae,et al.  Rigid-rod polymeric fibers , 2006 .

[60]  Stephen Z. D. Cheng,et al.  Simultaneously strong and tough ultrafine continuous nanofibers. , 2013, ACS nano.

[61]  M. Robbins,et al.  Chain Ends and the Ultimate Strength of Polyethylene Fibers. , 2015, ACS macro letters.

[62]  P. Meakin,et al.  Theoretical study of the influence of the molecular weight on the maximum tensile strength of polymer fibers , 1985 .

[63]  A. Peterlin,et al.  Molecular model of drawing polyethylene and polypropylene , 1971 .

[64]  H. Kahn,et al.  Novel method for mechanical characterization of polymeric nanofibers. , 2007, The Review of scientific instruments.

[65]  Yong Lak Joo,et al.  Tailoring nanorod alignment in a polymer matrix by elongational flow under confinement: simulation, experiments, and surface enhanced Raman scattering application. , 2014, Soft matter.

[66]  Y. Joo,et al.  The critical contribution of unzipped graphene nanoribbons to scalable silicon–carbon fiber anodes in rechargeable Li-ion batteries , 2015 .

[67]  G. Rutledge,et al.  Permeability of electrospun fiber mats under hydraulic flow , 2014 .

[68]  A. Pennings,et al.  A STUDY OF TRANSVERSE AND LONGITUDINAL SIZE EFFECTS IN HIGH-STRENGTH POLYETHYLENE FIBERS , 1994 .

[69]  C. Pellerin,et al.  Molecular Orientation in Electrospun Fibers: From Mats to Single Fibers , 2013 .

[70]  M. Rafailovich,et al.  Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[71]  K. Strawhecker,et al.  Interior morphology of high-performance polyethylene fibers revealed by modulus mapping , 2016 .

[72]  P. R. Pinnock,et al.  The mechanical properties of solid polymers , 1966 .

[73]  M. Gahleitner Melt rheology of polyolefins , 2001 .

[74]  Horst A von Recum,et al.  Electrospinning: applications in drug delivery and tissue engineering. , 2008, Biomaterials.

[75]  M. Kotaki,et al.  Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. , 2004, Biomaterials.