Membrane Composition and Modifications in Response to Aromatic Hydrocarbons in Gram-Negative Bacteria

[1]  Frederick C. Neidhardt,et al.  Escherichia coli and Salmonella :cellular and molecular biology , 2016 .

[2]  A. Mrozik,et al.  Facilitation of Co-Metabolic Transformation and Degradation of Monochlorophenols by Pseudomonas sp. CF600 and Changes in Its Fatty Acid Composition , 2016, Water, Air, & Soil Pollution.

[3]  A. Mark,et al.  A ring to rule them all: the effect of cyclopropane Fatty acids on the fluidity of lipid bilayers. , 2015, The journal of physical chemistry. B.

[4]  K. Dercová,et al.  Response Mechanisms of Bacterial Degraders to Environmental Contaminants on the Level of Cell Walls and Cytoplasmic Membrane , 2014, International journal of microbiology.

[5]  C. Whitfield,et al.  Biosynthesis and export of bacterial lipopolysaccharides. , 2014, Annual review of biochemistry.

[6]  R. Moser,et al.  Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria , 2014, Molecular microbiology.

[7]  Jeroen S. Dickschat,et al.  Identification and Characterization of a Periplasmic Aminoacyl-phosphatidylglycerol Hydrolase Responsible for Pseudomonas aeruginosa Lipid Homeostasis* , 2013, The Journal of Biological Chemistry.

[8]  J. Keasling,et al.  Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution , 2013, The ISME Journal.

[9]  A. Hassen,et al.  Changes in Membrane Fatty Acid Composition of Pseudomonas aeruginosa in Response to UV-C Radiations , 2013, Current Microbiology.

[10]  C. Rock,et al.  Phosphatidic acid synthesis in bacteria. , 2013, Biochimica et biophysica acta.

[11]  W. Dowhan A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. , 2013, Biochimica et biophysica acta.

[12]  O. Geiger,et al.  Phosphatidylcholine biosynthesis and function in bacteria. , 2013, Biochimica et biophysica acta.

[13]  B. Guigliarelli,et al.  Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. , 2012, Biochimica et biophysica acta.

[14]  O. Geiger,et al.  Ornithine lipids and their structural modifications: from A to E and beyond. , 2012, FEMS microbiology letters.

[15]  C. Raetz,et al.  Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates , 2012, Proceedings of the National Academy of Sciences.

[16]  J. Moser,et al.  Resistance Phenotypes Mediated by Aminoacyl-Phosphatidylglycerol Synthases , 2012, Journal of bacteriology.

[17]  M. Čertík,et al.  The effect of polychlorinated biphenyls (PCBs) on the membrane lipids of Pseudomonas stutzeri , 2011 .

[18]  H. Riezman,et al.  Distribution and functions of sterols and sphingolipids. , 2011, Cold Spring Harbor perspectives in biology.

[19]  C. Rock,et al.  Biosynthesis of Membrane Lipids , 2008, EcoSal Plus.

[20]  C. Rock,et al.  Membrane lipid homeostasis in bacteria , 2008, Nature Reviews Microbiology.

[21]  J. Ramos,et al.  Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E. , 2007, Environmental microbiology.

[22]  J. Ramos,et al.  A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. , 2007, Environmental microbiology.

[23]  H. Harms,et al.  Competition between cis, trans and Cyclopropane Fatty Acid Formation and its Impact on Membrane Fluidity , 2007 .

[24]  Jin Kusaka,et al.  Lipid domains in bacterial membranes , 2006, Molecular microbiology.

[25]  J. Ramos,et al.  Involvement of Cyclopropane Fatty Acids in the Response of Pseudomonas putida KT2440 to Freeze-Drying , 2006, Applied and Environmental Microbiology.

[26]  H. Heipieper,et al.  Carbon isotope fractionation during cis–trans isomerization of unsaturated fatty acids in Pseudomonas putida , 2004, Applied Microbiology and Biotechnology.

[27]  H. Heipieper,et al.  The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. , 2003, FEMS microbiology letters.

[28]  J. Ramos,et al.  Involvement of the cis/trans Isomerase Cti in Solvent Resistance of Pseudomonas putidaDOT-T1E , 1999, Journal of bacteriology.

[29]  P. Hols,et al.  The biosynthesis and functionality of the cell-wall of lactic acid bacteria , 1999, Antonie van Leeuwenhoek.

[30]  J. Cronan,et al.  Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli , 1999, Molecular microbiology.

[31]  P. Black,et al.  Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. , 1999, Progress in lipid research.

[32]  K. Matsumoto,et al.  Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli , 1997, Journal of bacteriology.

[33]  J. Ramos,et al.  Mechanisms for Solvent Tolerance in Bacteria* , 1997, The Journal of Biological Chemistry.

[34]  John F. Kennedy,et al.  Bacterial cell wall , 1996 .

[35]  J. Ramos,et al.  Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons , 1995, Journal of bacteriology.

[36]  B. Poolman,et al.  Interactions of cyclic hydrocarbons with biological membranes. , 1994, The Journal of biological chemistry.

[37]  G. Hölzl,et al.  Accumulation of glycolipids and other non-phosphorous lipids in Agrobacterium tumefaciens grown under phosphate deprivation. , 2013, Glycobiology.

[38]  H. Heipieper,et al.  Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E , 2011, Applied Microbiology and Biotechnology.

[39]  H. Schweizer Fatty Acid Biosynthesis and Biologically Significant Acyl Transfer Reactions in Pseudomonads , 2004 .

[40]  J. Ramos Biosynthesis of macromolecules and molecular metabolism , 2004 .

[41]  R. Hancock,et al.  Chapter 12 Molecular organization and structural role of outer membrane macromolecules , 1994 .