On the rate of convergence of the binomial tree scheme for American options

An American put option can be modelled as a variational inequality. With a penalization approximation to this variational inequality, the convergence rate $$O\big((\Delta x)^{2/3}\big)$$ of the Binomial Tree Scheme is obtained in this paper.

[1]  Guy Barles,et al.  Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations , 2007, Math. Comput..

[2]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[3]  Espen R. Jakobsen,et al.  ON THE RATE OF CONVERGENCE OF APPROXIMATION SCHEMES FOR BELLMAN EQUATIONS ASSOCIATED WITH OPTIMAL STOPPING TIME PROBLEMS , 2003 .

[4]  Damien Lamberton,et al.  Optimal stopping and embedding , 2000, Journal of Applied Probability.

[5]  Hongjie Dong,et al.  On the rate of convergence of finite-difference approximations for Bellman equations with constant coefficients , 2006 .

[6]  Min Dai,et al.  Convergence of Binomial Tree Method for European/American Path-Dependent Options , 2004, SIAM J. Numer. Anal..

[7]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[8]  P. Wilmott,et al.  The Mathematics of Financial Derivatives: Contents , 1995 .

[9]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[10]  Avner Friedman,et al.  Parabolic variational inequalities in one space dimension and smoothness of the free boundary , 1975 .

[11]  Cheng-long Xu,et al.  Numerical analysis on binomial tree methods for a jump-diffusion model , 2003 .

[12]  N. Krylov On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients , 2000 .

[13]  Kaushik I. Amin,et al.  CONVERGENCE OF AMERICAN OPTION VALUES FROM DISCRETE‐ TO CONTINUOUS‐TIME FINANCIAL MODELS1 , 1994 .

[14]  Lishang Jiang Mathematical Modeling and Methods of Option Pricing , 2005 .

[15]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[16]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[17]  Lamberton Brownian Optimal Stopping and Random Walks , 2002 .

[18]  A. Friedman Variational principles and free-boundary problems , 1982 .