The Cramér-Rao Inequality on Singular Statistical Models
暂无分享,去创建一个
[1] H. Cramér. Mathematical methods of statistics , 1947 .
[2] K. Do,et al. Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .
[3] O. Barndorff-Nielsen. Information And Exponential Families , 1970 .
[4] J. Neveu. Bases mathématiques du calcul des probabilités , 1966 .
[5] K. Fukumizu. Algebraic and Geometric Methods in Statistics: Exponential manifold by reproducing kernel Hilbert spaces , 2009 .
[6] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[7] Jean-François Bercher,et al. On generalized Cramér–Rao inequalities, generalized Fisher information and characterizations of generalized q-Gaussian distributions , 2012, ArXiv.
[8] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[9] S. Lang. Fundamentals of differential geometry , 1998 .
[10] Shun-ichi Amari,et al. Information Geometry and Its Applications , 2016 .
[11] Sumio Watanabe,et al. Almost All Learning Machines are Singular , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.
[12] Shun-ichi Amari,et al. Differential geometrical theory of statistics , 1987 .
[13] N. Ay,et al. Information geometry and sufficient statistics , 2012, Probability Theory and Related Fields.
[14] R. F.,et al. Mathematical Statistics , 1944, Nature.
[15] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[16] 渡邊 澄夫. Algebraic geometry and statistical learning theory , 2009 .
[17] Hông Vân Lê,et al. The uniqueness of the Fisher metric as information metric , 2013, 1306.1465.
[18] Aapo Hyvärinen,et al. Density Estimation in Infinite Dimensional Exponential Families , 2013, J. Mach. Learn. Res..
[19] Giovanni Pistone,et al. An Infinite-Dimensional Geometric Structure on the Space of all the Probability Measures Equivalent to a Given One , 1995 .
[20] Nicolas Boumal,et al. On Intrinsic Cramér-Rao Bounds for Riemannian Submanifolds and Quotient Manifolds , 2013, IEEE Transactions on Signal Processing.
[21] L. Wasserman. All of Nonparametric Statistics , 2005 .
[22] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[23] Nihat Ay,et al. Parametrized measure models , 2015, Bernoulli.