Multivariable Process Identification and Control From Decentralized Relay Feedback

Abstract The relay auto-tuning technique for PID controllers is being extended to tune multivariable controllers. In this paper, an auto-tuning method for multivariable controllers from decentralized relay feedback is proposed. The frequency response of an m × m multivariable process is identified from a decentralized relay test using an FFT-based method. For multivariable controller tuning, a new set of design equations are derived under the decoupling conditions, where the equivalent diagonal plants are independent of off-diagonal elements of the controller and used to design its diagonal elements first. The PID parameters of the controllers are determined individually with linear least squares frequency response defined on the basis of the identified frequency responses. Various typical examples are included for illustration of the effectiveness of this method.

[1]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[2]  Juha T. Tanttu,et al.  TUNING OF PID CONROLLERS: SURVEY OF SISO AND MIMO TECHNIQUES , 1991 .

[3]  Tore Hägglund,et al.  Automatic tuning of simple regulators with specifications on phase and amplitude margins , 1984, Autom..

[4]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[5]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[6]  Pradeep B. Deshpande Multivariable process control , 1989 .

[7]  Colin D. Tebbutt An expert system for multivariable controller design , 1992, Autom..

[8]  G. D. Bergland,et al.  A guided tour of the fast Fourier transform , 1969, IEEE Spectrum.

[9]  Chang-Chieh Hang,et al.  A frequency response approach to autotuning of multivariable controllers , 1997 .

[10]  Zalman J. Palmor,et al.  Automatic tuning of decentralized PID controllers for TITO processes , 1993, Autom..

[11]  Ai Poh Loh,et al.  Describing function matrix for multivariable systems and its use in multiloop PI design , 1994 .

[12]  Qiang Bi,et al.  A Frequency Domain Controller Design Method , 1997 .

[13]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[14]  D. P. Atherton,et al.  PID Controller Design for a TITO System , 1993, 1993 American Control Conference.

[15]  Chang-Chieh Hang,et al.  Autotuning of multiloop proportional-integral controllers using relay feedback , 1993 .

[16]  Tore Hägglund,et al.  Automatic Tuning of Pid Controllers , 1988 .

[17]  Chang-Chieh Hang,et al.  Self‐tuning Smith predictors for processes with long dead time , 1995 .