A tutorial on bridge sampling

[1]  Thorsten Pachur,et al.  Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision-makers , 2017, Psychonomic Bulletin & Review.

[2]  Anna Pajor,et al.  Estimating the Marginal Likelihood Using the Arithmetic Mean Identity , 2017 .

[3]  Eric-Jan Wagenmakers,et al.  Editors’ introduction to the special issue “Bayes factors for testing hypotheses in psychological research : Practical relevance and new developments” , 2016 .

[4]  Jean-Paul Fox,et al.  Evaluating evidence for invariant items: A Bayes factor applied to testing measurement invariance in IRT models , 2016 .

[5]  Wolf Vanpaemel,et al.  Prototypes, exemplars and the response scaling parameter: A Bayes factor perspective , 2016 .

[6]  E. Wagenmakers,et al.  Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology , 2016 .

[7]  Eric-Jan Wagenmakers,et al.  An evaluation of alternative methods for testing hypotheses, from the perspective of Harold Jeffreys , 2016 .

[8]  Ruud Wetzels,et al.  A Bayesian test for the hot hand phenomenon , 2016 .

[9]  E. Wagenmakers,et al.  Bayes factors for reinforcement-learning models of the Iowa Gambling Task , 2016 .

[10]  James O. Berger,et al.  Rejection odds and rejection ratios: A proposal for statistical practice in testing hypotheses , 2015, Journal of mathematical psychology.

[11]  Alexander Etz,et al.  J. B. S. Haldane's Contribution to the Bayes Factor Hypothesis Test , 2015, 1511.08180.

[12]  Christian P. Robert,et al.  The expected demise of the Bayes factor , 2015, 1506.08292.

[13]  E. Wagenmakers,et al.  Model Comparison and the Principle of Parsimony , 2015 .

[14]  J. Busemeyer,et al.  An improved cognitive model of the Iowa and Soochow Gambling Tasks with regard to model fitting performance and tests of parameter consistency , 2015, Front. Psychol..

[15]  Thorsten Pachur,et al.  Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice , 2014, Psychonomic Bulletin & Review.

[16]  E. Wagenmakers,et al.  Absolute performance of reinforcement-learning models for the Iowa Gambling Task , 2014 .

[17]  Darrell A. Worthy,et al.  A Comparison Model of Reinforcement-Learning and Win-Stay-Lose-Shift Decision-Making Processes: A Tribute to W.K. Estes. , 2014, Journal of mathematical psychology.

[18]  E. Wagenmakers,et al.  Validating the PVL-Delta model for the Iowa gambling task , 2013, Front. Psychol..

[19]  E. Wagenmakers,et al.  Bayesian Estimation of Multinomial Processing Tree Models with Heterogeneity in Participants and Items , 2013, Psychometrika.

[20]  Kaileigh A. Byrne,et al.  Decomposing the roles of perseveration and expected value representation in models of the Iowa gambling task , 2013, Front. Psychol..

[21]  Woojae Kim,et al.  A Model-Based fMRI Analysis with Hierarchical Bayesian Parameter Estimation. , 2013, Journal of neuroscience, psychology, and economics.

[22]  Rémi Bardenet,et al.  Monte Carlo Methods , 2013, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[23]  E. Wagenmakers,et al.  A Comparison of Reinforcement Learning Models for the Iowa Gambling Task Using Parameter Space Partitioning , 2013, J. Probl. Solving.

[24]  E. Wagenmakers,et al.  Performance of healthy participants on the Iowa Gambling Task. , 2013, Psychological assessment.

[25]  Thom Baguley,et al.  Prior approval: the growth of Bayesian methods in psychology. , 2013, The British journal of mathematical and statistical psychology.

[26]  Tom Lodewyckx,et al.  A tutorial on Bayes factor estimation with the product space method , 2011 .

[27]  Joshua W. Brown,et al.  A Model-Based fMRI Analysis with Hierarchical Bayesian Parameter Estimation , 2011 .

[28]  Richard G. Everitt,et al.  Likelihood-free estimation of model evidence , 2011 .

[29]  Jonathan J. Forster,et al.  Default Bayesian model determination methods for generalised linear mixed models , 2010, Comput. Stat. Data Anal..

[30]  Eric-Jan Wagenmakers,et al.  An encompassing prior generalization of the Savage-Dickey density ratio , 2010, Comput. Stat. Data Anal..

[31]  E. Wagenmakers,et al.  Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method , 2010, Cognitive Psychology.

[32]  David J. Lunn,et al.  Generic reversible jump MCMC using graphical models , 2009, Stat. Comput..

[33]  E. Wagenmakers,et al.  Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis , 2009, Psychonomic bulletin & review.

[34]  Michael D. Lee,et al.  A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods , 2008, Cogn. Sci..

[35]  Jerome R. Busemeyer,et al.  Comparison of Decision Learning Models Using the Generalization Criterion Method , 2008, Cogn. Sci..

[36]  Ioannis Ntzoufras,et al.  Bayesian Model and Variable Evaluation , 2008 .

[37]  E. Ionides Truncated Importance Sampling , 2008 .

[38]  Jeffrey N. Rouder,et al.  A hierarchical process-dissociation model. , 2008, Journal of experimental psychology. General.

[39]  M. Lee Three case studies in the Bayesian analysis of cognitive models , 2008, Psychonomic bulletin & review.

[40]  D. Martino,et al.  Neuropsychological frontal impairments and negative symptoms in schizophrenia , 2007, Psychiatry Research.

[41]  T. Ando Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models , 2007 .

[42]  Jun Lu,et al.  Signal Detection Models with Random Participant and Item Effects , 2007 .

[43]  Dale J. Poirier,et al.  The Growth of Bayesian Methods in Statistics and Economics Since 1970 , 2006 .

[44]  Robin J. Prescott,et al.  Generalised Linear Mixed Models , 2006 .

[45]  T. Griffiths,et al.  Modeling individual differences using Dirichlet processes , 2006 .

[46]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[47]  Jun Lu,et al.  An introduction to Bayesian hierarchical models with an application in the theory of signal detection , 2005, Psychonomic bulletin & review.

[48]  H. Stern,et al.  An Empirical Comparison of Methods for Computing Bayes Factors in Generalized Linear Mixed Models , 2005 .

[49]  B. Bogerts,et al.  Deficit in decision making in catatonic schizophrenia: An exploratory study , 2005, Psychiatry Research.

[50]  Jeffrey N. Rouder,et al.  A hierarchical model for estimating response time distributions , 2005, Psychonomic bulletin & review.

[51]  James O. Berger,et al.  Posterior model probabilities via path‐based pairwise priors , 2005 .

[52]  S. Frühwirth-Schnatter Estimating Marginal Likelihoods for Mixture and Markov Switching Models Using Bridge Sampling Techniques , 2004 .

[53]  Laura Bellodi,et al.  Decision-making heterogeneity in obsessive-compulsive disorder: ventromedial prefrontal cortex function predicts different treatment outcomes , 2002, Neuropsychologia.

[54]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[55]  Xiao-Li Meng,et al.  Warp Bridge Sampling , 2002 .

[56]  I. J. Myung,et al.  Toward a method of selecting among computational models of cognition. , 2002, Psychological review.

[57]  Roberto Keller,et al.  Frontal lobe dysfunction in pathological gambling patients , 2002, Biological Psychiatry.

[58]  R. Blair,et al.  Somatic Markers and Response Reversal: Is There Orbitofrontal Cortex Dysfunction in Boys with Psychopathic Tendencies? , 2001, Journal of abnormal child psychology.

[59]  G. Nicholls,et al.  Bridge estimation of the probability density at a point , 2001 .

[60]  Michael Conklin Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[61]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[62]  H. Damasio,et al.  Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. , 2000, Brain : a journal of neurology.

[63]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[64]  I. J. Myung,et al.  GUEST EDITORS' INTRODUCTION: Special Issue on Model Selection , 2000 .

[65]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .

[66]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[67]  Gregory P. Lee,et al.  Different Contributions of the Human Amygdala and Ventromedial Prefrontal Cortex to Decision-Making , 1999, The Journal of Neuroscience.

[68]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[69]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[70]  Charles E. Brown Applied Multivariate Statistics in Geohydrology and Related Sciences , 1998 .

[71]  H. Damasio,et al.  Dissociation Of Working Memory from Decision Making within the Human Prefrontal Cortex , 1998, The Journal of Neuroscience.

[72]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .

[73]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[74]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .

[75]  A. Raftery,et al.  Estimating Bayes Factors via Posterior Simulation with the Laplace—Metropolis Estimator , 1997 .

[76]  A. Damasio,et al.  Deciding Advantageously Before Knowing the Advantageous Strategy , 1997, Science.

[77]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[78]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[79]  A. Gelfand,et al.  Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .

[80]  A. Damasio,et al.  Insensitivity to future consequences following damage to human prefrontal cortex , 1994, Cognition.

[81]  A. Raftery,et al.  Stopping the Gibbs Sampler,the Use of Morphology,and Other Issues in Spatial Statistics (Bayesian image restoration,with two applications in spatial statistics) -- (Discussion) , 1991 .

[82]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[83]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[84]  J. Dickey The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .

[85]  J. Dickey,et al.  The Weighted Likelihood Ratio, Sharp Hypotheses about Chances, the Order of a Markov Chain , 1970 .

[86]  G. Kesteven,et al.  The Coefficient of Variation , 1946, Nature.

[87]  Ruud Wetzels,et al.  A Comparison of Reinforcement-Learning Models for the Iowa Gambling Task Using Parameter Space Partitioning , 2017 .

[88]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[89]  M. Lindgren,et al.  Editors' introduction (Editorial) , 2015 .

[90]  David A. Padua,et al.  Editors' introduction , 2007, International Journal of Parallel Programming.

[91]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[92]  J. Busemeyer,et al.  A contribution of cognitive decision models to clinical assessment: decomposing performance on the Bechara gambling task. , 2002, Psychological assessment.

[93]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[94]  A. Raftery,et al.  Bayes factors , 1995 .

[95]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[96]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[97]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[98]  A. N. Kolmogorov,et al.  Theory of Probability , 1929, Nature.

[99]  14 Model Comparison and the Principle of Parsimony , 2022 .