59-dBOmega 68-GHz Variable Gain-Bandwidth Differential Linear TIA in 0.7-µm InP DHBT for 400-Gb/s Optical Communication Systems

We report a variable-gain and variable-bandwidth differential linear transimpedance amplifier (TIA-VGA) realised in a 0.7-μm indium phosphide (InP) double heterojunction bipolar transistor (DHBT) technology. The circuits yields 59-dBΩ / 900-Ω differential transimpedance gain with 20-dB control and 68-GHz -3-dB bandwidth with 30-GHz control. Output-referred 1-dB-compression single-ended amplitude is larger than -4-dBm (400mVpp) up to 60GHz. High quality On-Off-Keying (OOK) eye diagrams are measured at 64 GBd. Consuming less than 475 mW, this circuit exhibits the largest bandwidth for a linear TIA-VGA, to our knowledge, along with wide-range gain and bandwidth controls. This makes it a particularly suitable and flexible candidate for high-symbol-rate photoreceivers dedicated to next generation 400-Gb/s and 1-Tb/s optical communication systems.

[1]  Eduard Säckinger,et al.  On the Noise Optimum of FET Broadband Transimpedance Amplifiers , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  F Ellinger,et al.  A Jitter-Optimized Differential 40-Gbit/s Transimpedance Amplifier in SiGe BiCMOS , 2010, IEEE Transactions on Microwave Theory and Techniques.

[3]  A. Leven,et al.  An InGaAs-InP HBT differential transimpedance amplifier with 47-GHz bandwidth , 2003, IEEE Journal of Solid-State Circuits.

[4]  Hideyuki Nosaka,et al.  100-Gbit/s PDM-QPSK Integrated Coherent Receiver Front-End for Optical Communications , 2011, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[5]  A. Adamiecki,et al.  160-Gbaud coherent receiver based on 100-GHz bandwidth, 240-GS/s analog-to-digital conversion , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[6]  O. Drisse,et al.  Submicron InP DHBT Technology for High-Speed High-Swing Mixed-Signal ICs , 2008, 2008 IEEE Compound Semiconductor Integrated Circuits Symposium.

[7]  Sung Min Park,et al.  A 50-Gb/s differential transimpedance amplifier in 65nm CMOS technology , 2014, 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[8]  Shen-Iuan Liu,et al.  A 40Gb/s Transimpedance-AGC Amplifier with 19dB DR in 90nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[9]  E. Sackinger The Transimpedance Limit , 2010 .

[10]  Yeong Yoon,et al.  110+ GHz Transimpedance Amplifier in InP-HBT Technology for 100 Gbit Ethernet , 2010, IEEE Microwave and Wireless Components Letters.

[11]  T. Masuda,et al.  40 Gb/s analog IC chipset for optical receivers-AGC amplifier, full-wave rectifier and decision circuit implemented using self-aligned SiGe HBTs , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[12]  A. Konczykowska,et al.  InP DHBT transimpedance amplifiers with automatic offset compensation for 100 Gbit/s optical communications , 2010, The 5th European Microwave Integrated Circuits Conference.

[13]  K. W. Kobayashi State-of-the-art 60 GHz, 3.6 k-ohm transimpedance amplifier for 40 Gb/s and beyond , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[14]  S. Chandrasekhar,et al.  All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM , 2014, OFC 2014.

[15]  Greg Raybon High symbol rate transmission systems for data rates from 400 Gb/s to 1Tb/s , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[16]  J.W. Haslett,et al.  Analysis and design of HBT Cherry-Hooper amplifiers with emitter-follower feedback for optical communications , 2004, IEEE Journal of Solid-State Circuits.