Discrete filter operators for large‐eddy simulation using high‐order spectral difference methods

The combination of a high‐order unstructured spectral difference (SD) spatial discretization scheme with sub‐grid scale (SGS) modeling for large‐eddy simulation is investigated with particular focus on the consistent implementation of a structural mixed model based on the scale similarity hypothesis. The difficult task of deriving a consistent formulation for the discrete filter within the SD element of arbitrary order led to the development of a new class of three‐dimensional constrained discrete filters. The discrete filters satisfy a set of selected criteria and are completely local within the SD element. Their weights can be automatically computed at run time from the number of solution points within each element and the expected filter cutoff length scale. The novel discrete filters can be applied to any SGS model involving explicit filtering and to a broad class of high‐order discontinuous finite element numerical schemes. The code is applied to the computation of turbulent channel flows at three Reynolds numbers, namely Reτ = 180, 395, and 590 (based on the friction velocity uτ and channel half‐width δ). Results from computations with and without the SGS model are compared against results from direct numerical simulation. The numerical experiments suggest that the results are sensitive to the use of the SGS model, even when a high‐order numerical scheme is used, especially when the grid resolution is kept relatively low and mostly in terms of resolved Reynolds stresses. Results obtained using existing filters based on the projection of the solution over lower‐order polynomial bases are also shown and demonstrate that these filters are inadequate for SGS modeling purposes, mostly because of their inability to enforce the selected cutoff length scale with sufficient accuracy. The use of the similarity mixed formulation proved to be particularly accurate in reproducing SGS interactions, confirming that its well‐known potential can be realized in conjunction with state‐of‐the‐art high‐order numerical schemes.Copyright © 2012 John Wiley & Sons, Ltd.

[1]  A. S. Monin,et al.  Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .

[2]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[3]  C. G. Speziale Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence , 1985, Journal of Fluid Mechanics.

[4]  K. Squires,et al.  On the Subgrid-Scale Modeling of Compressible Turbulence , 1990 .

[5]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[6]  P. Moin,et al.  A dynamic subgrid‐scale model for compressible turbulence and scalar transport , 1991 .

[7]  T. A. Zang,et al.  Direct and large-eddy simulations of three-dimensional compressible Navier-Stokes turbulence , 1992 .

[8]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[9]  J. Koseff,et al.  A dynamic mixed subgrid‐scale model and its application to turbulent recirculating flows , 1993 .

[10]  C. Meneveau,et al.  On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet , 1994, Journal of Fluid Mechanics.

[11]  P. Bradshaw,et al.  Compressible turbulent channel flows: DNS results and modelling , 1995, Journal of Fluid Mechanics.

[12]  Robert D. Moser,et al.  A numerical study of turbulent supersonic isothermal-wall channel flow , 1995, Journal of Fluid Mechanics.

[13]  Marcel Lesieur,et al.  Large-eddy simulation of a spatially growing boundary layer over an adiabatic flat plate at low Mach number , 1995 .

[14]  Maria Vittoria Salvetti,et al.  A Priori Tests of a New Dynamic Subgrid-Scale Model for Finite-Difference Large-Eddy Simulations , 1995 .

[15]  John H. Kolias,et al.  A CONSERVATIVE STAGGERED-GRID CHEBYSHEV MULTIDOMAIN METHOD FOR COMPRESSIBLE FLOWS , 1995 .

[16]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[17]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[18]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[19]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[20]  P. Moin,et al.  A General Class of Commutative Filters for LES in Complex Geometries , 1998 .

[21]  Charles Meneveau,et al.  Effects of the Similarity Model in Finite-Difference LES of Isotropic Turbulence Using a Lagrangian Dynamic Mixed Model , 1999 .

[22]  F. Nicoud,et al.  Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor , 1999 .

[23]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[24]  Pierre Sagaut,et al.  Discrete filters for large eddy simulation , 1999 .

[25]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[26]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[27]  P. Sagaut,et al.  Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number , 2000 .

[28]  N. Mangiavacchi,et al.  Subgrid-scale interactions in a numerically simulated planar turbulent jet and implications for modelling , 2000, Journal of Fluid Mechanics.

[29]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[30]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[31]  B. Geurts,et al.  A framework for predicting accuracy limitations in large-eddy simulation , 2002 .

[32]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[33]  Miguel R. Visbal,et al.  Large-Eddy Simulation on Curvilinear Grids Using Compact Differencing and Filtering Schemes , 2002 .

[34]  J. Fröhlich,et al.  Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions , 2003 .

[35]  E. R. V. Driest,et al.  Turbulent Boundary Layer in Compressible Fluids , 2003 .

[36]  Joel H. Ferziger,et al.  A robust high-order compact method for large eddy simulation , 2003 .

[37]  Hugh Maurice Blackburn,et al.  Spectral element filtering techniques for large eddy simulation with dynamic estimation , 2003 .

[38]  A. W. Vreman The adjoint filter operator in large-eddy simulation of turbulent flow , 2004 .

[39]  Holger Foysi,et al.  Compressibility effects and turbulence scalings in supersonic channel flow , 2004, Journal of Fluid Mechanics.

[40]  Marcel Lesieur,et al.  Large-Eddy Simulations of Turbulence , 2005 .

[41]  Marcel Vinokur,et al.  Spectral difference method for unstructured grids I: Basic formulation , 2006, J. Comput. Phys..

[42]  Georg May,et al.  A Spectral Dierence Method for the Euler and Navier-Stokes Equations on Unstructured Meshes , 2006 .

[43]  Zhi J. Wang,et al.  High-Order Multidomain Spectral Difference Method for the Navier-Stokes Equations , 2006 .

[44]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[45]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[46]  Antony Jameson,et al.  Spectral Difference Method for Unstructured Grids II: Extension to the Euler Equations , 2007, J. Sci. Comput..

[47]  Christophe Bailly,et al.  High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems , 2007, J. Comput. Phys..

[48]  Miguel R. Visbal,et al.  Implicit Large Eddy Simulation of Low Reynolds Number Flow Past the SD7003 Airfoil , 2008 .

[49]  Chunlei Liang,et al.  Large Eddy Simulation of Flow over a Cylinder Using High-Order Spectral Difference Method , 2008 .

[50]  Guido Lodato Conditions aux limites tridimensionnelles pour la simulation directe et aux grandes échelles des écoulements turbulents : modélisation de sous-maille pour la turbulence en région de proche paroi , 2008 .

[51]  Chunlei Liang,et al.  A Spectral Difference Method for Viscous Compressible Flows With Shocks , 2009 .

[52]  A. Jameson,et al.  High-Order Spectral Difference Simulation of Laminar Compressible Flow Over Two Counter-Rotating Cylinders , 2009 .

[53]  G. Jacobs,et al.  Large‐eddy simulation of compressible flows using a spectral multidomain method , 2009 .

[54]  Chunlei Liang,et al.  Large Eddy Simulation of Compressible Turbulent Channel Flow with Spectral Difierence method , 2009 .

[55]  Luc Vervisch,et al.  A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet , 2009 .

[56]  A. Jameson,et al.  Large Eddy Simulation of Compressible Turbulent Channel Flow with Spectral Difference method , 2009 .

[57]  Chunlei Liang,et al.  Spectral difference method for compressible flow on unstructured grids with mixed elements , 2009, J. Comput. Phys..

[58]  Chunlei Liang,et al.  High-order accurate simulation of low-Mach laminar flow past two side-by-side cylinders using spectral difference method , 2009 .

[59]  H. T. Huynh,et al.  A Reconstruction Approach to High -Order Schemes Including Discontinuous Galerkin for Diffusion , 2009 .

[60]  Riccardo Rossi,et al.  Direct numerical simulation of scalar transport using unstructured finite-volume schemes , 2009, J. Comput. Phys..

[61]  Eli Turkel,et al.  An implicit high-order spectral difference approach for large eddy simulation , 2010, J. Comput. Phys..

[62]  Chunlei Liang,et al.  Simulation of Transitional Flow over Airfoils using the Spectral Difference Method , 2010 .

[63]  Antony Jameson,et al.  A Proof of the Stability of the Spectral Difference Method for All Orders of Accuracy , 2010, J. Sci. Comput..

[64]  A. Jameson High-Order Methods for Diffusion Equation with Energy Stable Flux Reconstruction Scheme , 2011 .

[65]  Antony Jameson,et al.  Insights from von Neumann analysis of high-order flux reconstruction schemes , 2011, J. Comput. Phys..

[66]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[67]  Jichun Li,et al.  Unified Analysis of Leap-Frog Methods for Solving Time-Domain Maxwell’s Equations in Dispersive Media , 2011, J. Sci. Comput..

[68]  Antony Jameson,et al.  An Extension of Energy Stable Flux Reconstruction to Unsteady, Non-linear, Viscous Problems on Mixed Grids , 2011 .

[69]  Matteo Parsani,et al.  VALIDATION AND APPLICATION OF AN HIGH-ORDER SPECTRAL DIFFERENCE METHOD FOR FLOW INDUCED NOISE SIMULATION , 2011 .

[70]  Antony Jameson,et al.  On the Non-linear Stability of Flux Reconstruction Schemes , 2012, J. Sci. Comput..

[71]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes for Triangular Elements , 2012, J. Sci. Comput..

[72]  N. So On the breakdown of boundary layer streaks , 2022 .

[73]  G.,et al.  TOWARD THE LARGE-EDDY SIMULATION OF COMPRESSIBLE TURBULENT FLOWS , 2022 .