Study on the Time Development of Complex Network for Metaheuristic

This work deals with the hybridization of the complex networks framework and evolutionary algorithms. The population is visualized as an evolving complex network, which exhibits non-trivial features. This paper investigates briefly the time development of complex network within the run of selected metaheuristic algorithm, which is Differential Evolution (DE). This paper also briefly discuss possible utilization of the complex network attributes such as adjacency graph, centralities, clustering coefficient and others. Experiments were performed for one selected DE strategy and one simple test function.