Quantitative Interspecific Approach to the Stylosphere: Patterns of Bacteria and Fungi Abundance on Passerine Bird Feathers

[1]  R. Jovani,et al.  Moult nestedness and its imperfections: insights to unravel the nature of passerine wing‐feather moult rules , 2020, Journal of Avian Biology.

[2]  T. Nyman,et al.  Patterns of Microbiome Variation Among Infrapopulations of Permanent Bloodsucking Parasites , 2020, bioRxiv.

[3]  K. Kohl Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities , 2020, Philosophical Transactions of the Royal Society B.

[4]  K. Kohl,et al.  A bird's-eye view of phylosymbiosis: weak signatures of phylosymbiosis among all 15 species of cranes , 2020, Proceedings of the Royal Society B.

[5]  Shen Jean Lim,et al.  An introduction to phylosymbiosis , 2019, Proceedings of the Royal Society B.

[6]  P. Heneberg,et al.  Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria , 2019, The ISME Journal.

[7]  L. Parfrey,et al.  Is Host Filtering the Main Driver of Phylosymbiosis across the Tree of Life? , 2018, mSystems.

[8]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[9]  G. D. Werner,et al.  sensiPhy: An r‐package for sensitivity analysis in phylogenetic comparative methods , 2018 .

[10]  R. Milo,et al.  The biomass distribution on Earth , 2018, Proceedings of the National Academy of Sciences.

[11]  R. Jovani,et al.  Feather mites play a role in cleaning host feathers: New insights from DNA metabarcoding and microscopy , 2018, Molecular ecology.

[12]  Jose A Navas-Molina,et al.  Bacterial density rather than diversity correlates with hatching success across different avian species , 2018, FEMS microbiology ecology.

[13]  Joana Falcão Salles,et al.  Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks , 2017, Microbiome.

[14]  Martin A. Stoffel,et al.  rptR: repeatability estimation and variance decomposition by generalized linear mixed‐effects models , 2017 .

[15]  Rob Knight,et al.  Dramatic Differences in Gut Bacterial Densities Correlate with Diet and Habitat in Rainforest Ants. , 2017, Integrative and comparative biology.

[16]  K. McGraw,et al.  Plumage micro-organisms and preen gland size in an urbanizing context. , 2017, The Science of the total environment.

[17]  C. I. Vágási,et al.  Cohabitation with farm animals rather than breeding effort increases the infection with feather‐associated bacteria in the barn swallow Hirundo rustica , 2017 .

[18]  E. Burtt,et al.  Feather-degrading bacilli in the plumage of wild birds: Prevalence and relation to feather wear , 2016, The Auk.

[19]  S. Leclaire,et al.  Feather bacterial load shapes the trade-off between preening and immunity in pigeons , 2015, BMC Evolutionary Biology.

[20]  V. Kisand,et al.  Manipulation of parental effort affects plumage bacterial load in a wild passerine , 2015, Oecologia.

[21]  A. Møller,et al.  Repeatability of Feather Mite Prevalence and Intensity in Passerine Birds , 2014, PloS one.

[22]  S. Leclaire,et al.  Feather bacterial load affects plumage condition, iridescent color, and investment in preening in pigeons , 2014 .

[23]  S. Leclaire,et al.  Uropygial gland size and composition varies according to experimentally modified microbiome in Great tits , 2014, BMC Evolutionary Biology.

[24]  C. I. Vágási,et al.  Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria , 2013, Naturwissenschaften.

[25]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[26]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[27]  A. Møller,et al.  Goshawk prey have more bacteria than non-prey. , 2012, The Journal of animal ecology.

[28]  V. Tilgar,et al.  Plumage bacterial load increases during nest-building in a passerine bird , 2012, Journal of Ornithology.

[29]  Anders F. Andersson,et al.  Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea , 2011, The ISME Journal.

[30]  V. Tilgar,et al.  Plumage Bacterial Assemblages in a Breeding Wild Passerine: Relationships with Ecological Factors and Body Condition , 2011, Microbial Ecology.

[31]  A. Møller,et al.  Microorganisms Associated with Feathers of Barn Swallows in Radioactively Contaminated Areas Around Chernobyl , 2010, Microbial Ecology.

[32]  Rob Knight,et al.  Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. , 2010, FEMS microbiology letters.

[33]  G. Moreno-Rueda Uropygial gland size correlates with feather holes, body condition and wingbar size in the house sparrow Passer domesticus. , 2010 .

[34]  A. Møller,et al.  Feather micro‐organisms and uropygial antimicrobial defences in a colonial passerine bird , 2009 .

[35]  M. H. Forsyth,et al.  Evidence that plumage bacteria influence feather coloration and body condition of eastern bluebirds Sialia sialis , 2009 .

[36]  A. Badyaev,et al.  Comprehensive investigation of ectoparasite community and abundance across life history stages of avian host , 2009 .

[37]  P. Marra,et al.  Variation in Plumage Microbiota Depends on Season and Migration , 2009, Microbial Ecology.

[38]  W. A. Cox,et al.  A Phylogenomic Study of Birds Reveals Their Evolutionary History , 2008, Science.

[39]  P. Marra,et al.  A Molecular Comparison of Plumage and Soil Bacteria Across Biogeographic, Ecological, and Taxonomic Scales , 2007, Microbial Ecology.

[40]  G. Hill,et al.  Bacteria as an Agent for Change in Structural Plumage Color: Correlational and Experimental Evidence , 2007, The American Naturalist.

[41]  Daniel A. Cristol,et al.  Prevalence and genetic diversity of Bacillus licheniformis in avian plumage , 2005 .

[42]  S. Lindow,et al.  Microbiology of the Phyllosphere , 2003, Applied and Environmental Microbiology.

[43]  D. Tompkins,et al.  Reciprocal Natural Selection on Host‐Parasite Phenotypes , 1999, The American Naturalist.

[44]  S. Sanche,et al.  Rapid Identification of Fungi by Using the ITS2 Genetic Region and an Automated Fluorescent Capillary Electrophoresis System , 1999, Journal of Clinical Microbiology.

[45]  J. M. Ichida,et al.  Occurrence of feather-degrading bacilli in the plumage of birds , 1999 .

[46]  C. S. Richter,et al.  Isolation, Identification, and Characterization of a Feather-Degrading Bacterium , 1990, Applied and environmental microbiology.

[47]  Nicolas Schtickzelle,et al.  Eco‐evolutionary dynamics in fragmented landscapes , 2017 .

[48]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[49]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[50]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .