Retrieval of absolute thermospheric concentrations from the far UV dayglow: An application of discrete inverse theory

The photoelectron-excited far ultraviolet dayglow provides a means for remote sensing a N{sub 2}, O, O{sub 2}, and temperature in the terrestrial thermosphere. This paper describes a model based on the maximum likelihood method of nonlinear discrete inverse theory, which extracts information on the state of the thermosphere from limb scans of the dayglow. The authors show that concentrations between about 150 and (at least) 350 km can be retrieved to a high degree of accuracy and precision, independent of instrument absolute calibration. Also, the retrieved concentrations are not strongly sensitive to errors in the photoelectron excitation cross sections. The model will allow the routine development of climatological databases on the thermosphere from satellite remote sensing missions. 35 refs., 8 figs., 1 tab.

[1]  H. Hinteregger,et al.  Observational, reference and model data on solar EUV, from measurements on AE-E , 1981 .

[2]  J. C. McConnell,et al.  An analysis of satellite observations of the O I EUV dayglow , 1988 .

[3]  J. Maurer,et al.  The neutral mass spectrometer on Dynamics Explorer B , 1981 .

[4]  J. McConnell,et al.  A reanalysis of rocket measurements of the ultraviolet dayglow , 1988 .

[5]  R. Meier,et al.  A Photoelectron Model for the Rapid Computation of Atmospheric Excitation Rates. , 1982 .

[6]  J. P. Doering,et al.  Measurements of the ambient photoelectron spectrum from atmosphere explorer: II. AE-E measurements from 300 to 1000 km during solar minimum conditions , 1980 .

[7]  I. Mcdade,et al.  A rocket tomography measurement of the N+2 3914 Å emission rates within an auroral arc , 1991 .

[8]  JAMES C. G. Walker,et al.  Analytic Representation of Upper Atmosphere Densities Based on Jacchia's Static Diffusion Models , 1965 .

[9]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[10]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[11]  P. Richards,et al.  On the inversion of O+(²D-²P) 7320 Å twilight airglow observations: A method for recovering both the ionization frequency and the thermospheric oxygen atom densities , 1991 .

[12]  A. Stewart Photoionization coefficients and photoelectron impact excitation efficiencies in the daytime ionosphere , 1970 .

[13]  Paul B. Hays,et al.  The auroral 6300 Å emission: Observations and modeling , 1988 .

[14]  R. Penrose A Generalized inverse for matrices , 1955 .

[15]  Robert R. Meier,et al.  The ultraviolet dayglow at solar maximum. III: Photoelectron-excited emissions of N2 and O , 1985 .

[16]  C. Rodgers Characterization and Error Analysis of Profiles Retrieved From Remote Sounding Measurements , 1990 .

[17]  P. Feldman,et al.  The ultraviolet dayglow 1. Far UV emissions of N and N2 , 1980 .

[18]  P. Richards,et al.  The altitude variation of the ionospheric photoelectron flux: a comparison of theory and measurement , 1985 .

[19]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[20]  A. Hedin MSIS‐86 Thermospheric Model , 1987 .

[21]  R. Link Feautrier solution of the electron transport equation , 1992 .

[22]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[23]  D. E. Anderson,et al.  Radiation transport effects on the OI 1356‐Å limb intensity profile in the dayglow , 1983 .

[24]  J. Samson,et al.  Production of N+∗ from N2 + hv: Effective EUV emission yields from laboratory and dayglow data , 1991 .

[25]  R. R. Meier,et al.  Ultraviolet spectroscopy and remote sensing of the upper atmosphere , 1991 .

[26]  P. Richards,et al.  An investigation of the consistency of the ionospheric measurements of the photoelectron flux and solar EUV flux , 1984 .

[27]  Robert R. Meier,et al.  A far and extreme ultraviolet limb imaging spectrograph for DMSP satellites , 1992, Optics & Photonics.

[28]  D. Jackson The use of a priori data to resolve non‐uniqueness in linear inversion , 1979 .

[29]  J. Lutjeharms,et al.  The Natal pulse: An extreme transient on the Agulhas Current , 1988 .

[30]  Jingbo Wang,et al.  Effects of the close approach of potential curves in photoabsorption by diatomic molecules—II. Temperature dependence of the O2 cross section in the region 130–160 nm , 1987 .

[31]  R. Meier,et al.  The OI 989 and 1173 Å multiplets in the dayglow , 1988 .

[32]  Robert R. Meier,et al.  Determination of atmospheric composition and temperature from the u.v. airglow , 1983 .

[33]  P. Richards,et al.  A method for the retrieval of atomic oxygen density and temperature profiles from ground‐based measurements of the O+(²D ‐ ²P) 7320‐Å twilight airglow , 1991 .

[34]  Andrew B. Christensen,et al.  Instrumentation on the RAIDS experiment I: far-ultraviolet imaging spectrograph and scanning grating spectrometers for the middle and near ultraviolet , 1992, Optics & Photonics.